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ABSTRACT

Empirical Orthogonal Functions (EQF’s), eigenvectors of the spatial cross-covariance matrix of a me-
teorological field, are reviewed with special attention given to the necessary weighting factors for gridded
data and the sampling errors incurred when too small a sample is available. The geographical shape of an
EOF shows large intersample variability when its associated eigenvalue is *“‘close” to a neighboring one. A
rule of thumb indicating when an EOF is likely to be subject to large sampling fluctuations is presented.
An explicit example, based on the statistics of the 500 mb geopotential height field, displays large intersample
variability in the EOF’s for sample sizes of a few hundred independent realizations, a size seldom exceeded
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by meteorological data sets.

1. Imtroduction

Climate may be defined as the multivariate, mul-
tiple-time probability distribution of states of the
ocean-ice-atmosphere system. A primary goal in
modern climatology is the measurement and under-
standing of the parameters describing the stationary
probability distribution. Secular changes in these
parameters are of interest since they constitute a
measure of climatic change. The task of determining
the parameters is not easy since the natural vari-
ability of the climate system can lead to large sam-
pling errors in estimates of properties of the parent
distribution, Many climate variables have long time
scales so that even a very long record may contain
only a few statistically independent samples. For ex-
ample, while the time between independent samples
for estimating the mean of the 500 mb geopotential
height field at a point is between 6 and 10 days, for
sea-surface temperatures this time may be up to sev-
eral months. The independent sampling time depends
upon the parameter being estimated and the statis-
tical model used for the variable in the estimation
procedure (Leith, 1973; Jones, 1975).

Since their introduction in meteorology (Obukhov,
1947; Lorenz, 1956; Kutzbach, 1967), empirical or-
thogonal functions (EOF’s) or principal components
have become very popular as a convenient means of
representing climatological fields. The EOF’s are
defined as the eigenvectors of the cross-covariance
matrix between grid points. The eigenvectors are lin-
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ear combinations of the individual station data with
weights chosen so that the sums are uncorrelated
with each other. These weights for the various sta-
tions can be represented as a contour map. EOF’s
(the weights) are a property of the parent probability
distribution of the climate; hence, their forms are of
great interest. We cannot know the exact EOF’s for
climate but must be satisfied with estimates of them
based upon a finite number of independent realiza-
tions of the instantaneous state of the field. The pur-
pose of this paper is to provide an estimate of the
sampling errors encountered in some common cli-
matological applications. While much of the under-
lying theory exists in the statistical literature (e.g.,
Girschick, 1939; Anderson, 1963), it is usually not
in a form convenient to the climatologist. We were
guided by some earlier applied studies by Preisen-
dorfer and Barnett (1977) and Buell (1979).

The outline of the paper is as follows: Section 2
introduces EOF’s for continuous stochastic fields and
establishes notation. Section 3 makes use of linear
algebra to estimate the first-order perturbation of
eigenvalues and eigenvectors of the covariance ma-
trix due to sampling errors. Section 4 provides a nu-
merical example of how a homogeneous field with
parameters comparable to those encountered in me-
teorology generates rather large intersample vari-
ability even with a population of a few hundred.
Conclusions and a “rule of thumb™ are presented in
the last section.
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2. Empirical orthogonal functions

In this section we define empirical orthogonal
functions (EOF’s), establish notation, and recall
some properties of EOF’s. We shall be examining a
sequence of fields, each example or realization of
which is a continuous function in space. The sequence
may be constructed from a single field which evolves
in time. If the correlation of the field with itself at
a later time becomes small for long enough time in-
tervals, then independent realizations may be ob-
tained by choosing them at sufficiently long intervals.
Just how long these intervals must be is often difficult
to determine in advance since different spatial scales
frequently have different autocorrelation times. We
assume here that a long enough interval between
realizations is used and that all realizations are in-
dependent. Measurement and analysis errors are ig-
nored here although in practice they can be signif-
icant, we intend to study this additional effect in a
later paper. The fluctuations from one realization to
the next are just the natural variations of the field.
By examining enough realizations and assuming the
time series to be stationary (i.e., ignoring seasonal
and secular trends) we can learn as much as we
please about the probability distribution underlying
the process. In this section we discuss the EOF’s for
such a process. By considering continuous fields first,
a natural choice of the weighting of data at discrete
grid points can be formulated.

Consider a meteorological field T(r) defined at the
point r on a two-dimensional domain (the arguments
given here are easily generalized to 3 dimensions).
It will be assumed that the mean of 7(r) has been
subtracted out so that (7(r)) = 0, where the angular
brackets denote ensemble average or expectation
value. The covariance of the field between any two
points r and ' may be defined

¥(r, ¥) = (T(r)T(r')) (1)

Principle components or EOF’s are ordinarily de-
fined as the eigenvectors of a finite-dimensional co-
variance matrix, but since the covariance matrix here
is a continuous function of two vector variables it is
more natural to consider (r, r') as the kernel of an
integral equation eigenvalue problem. The formalism
is often referred to as the Karhunen-Loéve expansion
of T, and the basis functions or EOF’s are the ei-
genfunctions of the integral equation :

L verea -rem, @

where A is the area of the domain, A, is the eigen-
value associated with the eigenfunction ¢.(r), and
a is an integer index. The integral extends over the
finite domain of interest. It is obvious that EOF
shapes will depend upon the geometry of the domain.

Since the covariance v is bounded, continuous and
symmetric in its arguments, several properties of the
system follow (Courant and Hilbert, 1953):
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1) The eigenvalues are positive and discrete, al-
though some eigenfunctions may have the same ei-
genvalue (degeneracy). In general there will be in-
finitely many.

2) The functions ¢,(r) may be normalized so that
they form an orthonormal set:

= oo = 5, 3
AJs

3) The functions ¢,(r) are a complete set:
2 9u)0.(r) = o ~ ¥). @)

It follows from (3) and (4) that each realization
of the field 7(r) can be expanded into an infinite
series of the ¢.(r)

7() = 3 Tp0), )

where

1= | 01w (6)
AJa
Each realization of the field 7(r) is represented
via (6) by a set of mode amplitudes T,, o = 1, 2,
. ... The statistics of T(r) require that the T, have
a probability distribution satisfying

(T,)=0
and
(TaTs) = Ndas s @)

i.e., the different components of the series (5) are
uncorrelated with each other and the variance of the
mode « is just the eigenvalue A, associated with mode
a. Generating random fields using Egs. (5) and (7)
can be useful for many different purposes such as
that of stochastic modeling (see North and Cahalan,
1981) or that of estimating sampling errors as in
Section 3 of this paper.

It can be shown directly from (5) and (7) that the
variance of the field at a point is

(T(r)*) = 21 Aadolr)? (8)

and the average variance integrated over the domain
is

1 ool
ZL (T(r)*Hdr = zl A -

Because of Eq. (9) we may think of A, as the
portion of total variance “explained” by the EOF
bo(r).

It is convenient to label the eigenfunctions so that
the eigenvalues are in descending order, i.e.,

A|>A2>A3"'.

%)

(10)

We can then consider truncating the sequence at
some level # by retaining only the first # terms in the
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formulas (5), (8) and (9). By the ordering (10) we
are assured of keeping the largest contributors to the
total variance (9). The property of EOF’s which
makes them special is that they are the optimum set
of basis functions for a given truncation n. That is,
for a given n no other basis set can explain more of
the average variance, i.e., generate a larger subsum
approximating (9). The proof of this theorem can be
found in various forms in the literature (e.g., Lorenz,
1956; Davis, 1976).

In practice we never have continuous measure-
ments of 7(r) at each point r but must be satisfied
with a finite and sometimes irregularly spaced dis-
crete grid of m points in the domain A4. If it is our
aim to learn about the intrinsic EOF’s ¢,(r), inde-
pendent of the grid, we must find an appropriate
scaling which eliminates the geometrical effects of
grid spacing. The integral equation (2) may be ap-
proximated by the finite sum

i > 300, [NAA)BE) = M), (D)

where r;, i = 1, 2 -+, m are the sequence of m
individual grid points and (AA); is an area element
containing the point r, The shapes of the elements
might for example be chosen as polygons. Multiply-
ing (11) through by (AA),'/? allows us to define a
new symmetric matrix and the associated finite-di-
mensional eigenvalue problem (Buell, 1971, 1978)

M3

It

I‘U@a( j) = Xntq)ol(i)a ( 12)

J
where

Ty = (AA4),'*y(r, 1,)(AA),}' %/ A, (13)

‘I’a(i) = ¢a(ri)(AA)i1/2/Al/2- (14)

Although the metric factors (AA4),'/?> enter the
definitions of T'; and ®,(i), they do not affect the
scaling of the eigenvalues \,. Hence, the eigenvalues
computed from (12) are approximations to the first
few eigenvalues of the continuous field EOF’s. Ap-
proximations to the true continuous EOF’s can be
obtained by solving (14) for ¢.(r;). Note that the
resulting EOF shapes and eigenvalues A, will be dif-
ferent from the true EOF shapes and eigenvalues
unless the metric factor is included. In what follows
we shall see that the sampling errors incurred in es-
timating EOF’s depend strongly upon the spectrum
of eigenvalues. Since we want to estimate the EOF’s
and eigenvalues characterizing the true field inde-
pendent of the station or grid point locations it is
important that we have an idea about the spacing
of the true eigenvalues. The metric factor introduced
here insures that we at least have an approximation
to the true eigenvalues which in principle becomes
exact for a large enough number of grid points. In
an actual case one should be sure that the spacing
of grid points is smaller than an autocorrelation
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length for the field; otherwise important contribu-
tions to the variance at smaller scales will be lost and
the result will include a kind of aliasing error in the
retained modes. For a further discussion of this point
we recommend the article by Buell (1978).

Before turning to the sampling problem we wish
to mention a few peculiarities connected with the
physical interpretation of EOF’s for real physical
fields. An obvious difficulty arises in physically in-
terpreting an EOF if it is not even well-defined in-
trinsically. This can happen for instance if two or
more EOF’s have the same eigenvalue. It is easily
demonstrated that any linear combination of the
members of the degenerate multiplet is also an EOF
with the same eigenvalue. Hence, in the case of a
degenerate multiplet one can choose a continuous
range of linear combinations which will all satisfy
the Karhunen-Loéve Equation (2) and which are in-
distinguishable in terms of their contribution to the
average variance (9). This ambiguity for degenerate
multiplets is central to understanding the sampling
theory in this paper. Such degeneracies often arise
from a symmetry in the problem but they can be
present for no apparent reason (accidental degen-
eracy).

There are a few cases in which the EOF’s can be
found analytically and since these are instructive as
well as useful we mention a few here:

1) Rotational invariance of statistics on the sphere
(Obukhov, 1947; North and Cahalan, 1981) leads
to the spherical harmonics as EOF’s. Similarly on
the circle the EOF’s are the sine and cosine Fourier
basis.

2) Translational invariance on the infinite line
leads to the Fourier integral representation and is
the foundation of spectral analysis of stationary time
series (Papoulis, 1965).

3) Linear mechanical systems such as a drum
head observed at a fixed interval after evolving from
random initial conditions lead to the normal modes
as the EOF’s (North, 1982).!

3. Perturbation of EOF’s by sampling errors

The EOF’s of a stochastic field are a property of
the underlying multi-dimensional probability distri-
bution. Any estimate of the EOF’s from a finite num-
ber of realizations will be subject to sampling errors.
It is obviously important to establish some estimate
of the sampling errors involved before interpreting
sample EOF’s. In this section we present an estimate
of the errors which is first order in (N ')!/2, where
N is the number of realizations. From this error es-

! Preisendorfer has also found examples of linear mechanical
systems whose EOF’s can be found. The work is described in
“Principal Components and the Motions of Simple Dynamical
Systems,” Scripps Institution of Oceanography. Reference Series,
79-11, April, 1979.
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timate we derive a rule of thumb determining
whether a sample EOF is expected to be a faithful
representation of the true EOF.

The familiar methods of linear analysis can be
used to estimate the shifts in eigenvectors and ei-
genvalues when the covariance matrix they are de-
rived from has added to it a small symmetric per-
turbation matrix (Mathews and Walker, 1965; An-
derson, 1963). Let the ij element of the exact m
gridpoint covariance matrix be I';. (We use the dis-
crete index notation in this section for convenience;
we use Greek letters for population quantities and
Latin letters for sample quantities.) We denote the
exact eigenvectors of I' by &,, corresponding to ei-
genvalues A,a = 1, 2 - - - m. The eigenvalue equa-
tion is

M3

Ty®.(J) = XPa(d). (15)

j=1

In practice one has only an estimate of I';. In fact
we may write

where for a particular sample of N rcaiizations, Sy
is the (symmetric) sample covariance matrix, eV
represents the sampling error with ¢ a parameter of
order (2/N)'/?, and ¥}; is of the order of

Vi =~ [(Tuly; + T2 /212 (17)

These last statements come from the standard error
of a covariance between Gaussian random variables.
From the sample covariances S;; one can determine
sample eigenvectors f,, and eigenvalues /, by solving
2 Suf ol J) = Lfod). (18)

Jj=1
We wish to know how the sample eigenvectors
fo(i) and eigenvalues /, differ from the exact ones
®.(i) and \,. We use the standard method of ex-

panding all perturbed quantities into m power series
in the small parameter e

fo@) = ®,30) + ef 0 + Ef P + - - -,
=X+l PV +ELP+ -0,

(19)
(20)

We shall be content with the first-order corrections
in this paper, although equations for higher orders
can be developed (Anderson, 1963). Such a crude
estimate should be sufficient in many climatological
applications. After inserting the expansions (19) and
(20) into (18) and collecting the coefficients of the
various powers of ¢, we may make use of the or-
thogonality of the f.(i) to arrive at the first-order
estimates

(21)

LY = 2 @,()V;2.0)),
i

= (Do V%),

the latter in an inner product notation, and

(22)
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gy = 3 2o V2

Pg(i),
B*a AB - Aa B(l)

(23)
where we have again used the inner product notation
introduced in (22).

We proceed now to find simple practical approx-
imations to these first-order quantities to facilitate
their use. First note the qualitative difference be-
tween the two expressions: At this order the shift
in eigenvector depends strongly upon the spacing
of eigenvalues, whereas the shift of eigenvalues
does not.

To first order the shift in eigenvalue A, is given
by

e = eV = A\ (2/N)2, (24)

where we have estimated the inner product (22) by
Ao and e by (2/N)'/? based upon (17). The difference
denominators in (23) largely determine whether
8, is large. If no other eigenvalue is close to A, the
error is very small for f,. On the other hand, if an-
other eigenvalue A, is very close to A, then we can
expect the term 8 = o to dominate the sum in (23)
and we obtain the estimate

58,(1) = ef (i) ~ (2/N)/2 2’1;— 801, (25)

where A), is the spacing A\, — A, and we have es-
timated the inner product in (23) by A,. Making use
of (24) we may write

oA\,
AN,

80®,(i) ~ ®,(i). (26)

In other words if the sampling error in the eigenvalue
is comparable to the distance to a nearby eigenvalue,
then the sampling errors in the EOF will be com-
parable to the “nearby” EOF. The instability due
to sampling when the eigenvalues are closely spacea
is, of course, implicit in the statistical literature cited
earlier (Anderson, 1963).

A physical interpretation of this result is imme-
diately apparent. If the sampling error in eigenvaiue
is comparable to the spacing, a kind of “effective
degeneracy” occurs. We have already seen that de-
generacy leads to an intrinsic ambiguity in defining
the EOF, since any linear combination of the possible
eigenvectors in the multiplet (subspace) is also an
eigenvector. But even if no degeneracy actually ex-
ists, some eigenvalues may be close enough to each
other that sampling errors lead to an effective de-
generacy and mixing occurs. That is, a particular
sample will lead to one linear combination and an-
other sample may pick out a drastically different lin-
ear combination of the nearby eigenvectors. The re-
sult is wildly differing patterns from one sample to
the next.

The derivation of formulas (22) and (23) does nct
hold if there is degeneracy in the unperturbed case.
In this case i is clear that one mus* chocse the un-
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perturbed degenerate eigenvectors carefully to avoid
the singularity in the sum (23). This can be done in
practice but need not concern us here, since the qual-
itative effects are clear from the discussion above.
In the next section we present a numerical example
that illustrates the preceding formal discussion.

4. Numerical example

In this section we illustrate the sampling error
problem by considering a numerical example with
a statistical structure reasonably close to a clima-
tological field. Although we use statistics derived
from the statistics of the 500 mb geopotential height
field, the calculations are not to be construed as a
theory or empirical study of the EOF’s of the 500
mb height field.

We shall construct a Karhunen-Loéve expansion
to generate independent realizations of a stochastic
field having homogeneous statistics on the sphere. As
noted in Section 2, this can be accomplished by using
the complex spherical harmonics as a basis set

M8

|
F@O =3 3 fulr@), (27)

=0

where the radial unit vector £ denotes position on the
sphere. The spherical harmonics are standard Y;"(f)
= N,,.P}"(sing)e™?, P} are the associated Legendre
polynomials, # latitude, ¢ longitude and the N,
= N, are real constants chosen so that the spherical
harmonics have unit normalization: [ dQ|Y/"|* = 1.
The f,, are random complex variables constrained
by the realness of F(&) to satisfy f%, = f, _,, (asterisks
denote complex conjugation). It can be shown (for
details see North and Cahalan, 1981; North et al.,
1982) that the f,,, are to be drawn from a probability
distribution such that (f,,y = 0 and

<f ;‘r‘nf I’m’> = Ulzall’amm' .

We have normalized the spectrum ¢/ to give unit
variance at each point while the wavenumber de-
pendence is at our discretion. For the purposes of
this example we have chosen the spherical wavenum-
ber dependence shown in Fig. 1. The spectrum is
similar to the one exhibited by the 500 mb geopo-
tential height field in midlatitudes (North er al.,
1982). Although we could study sampling errors for
the Y/"(#) by looking at sample estimates of the co-
variance of F(£) over the whole sphere, to create a
situation more common to empirical studies we have
restricted the data to a rectangular patch on the
sphere of dimensions 20-60°N in latitude and 100°
of width in longitude. Such a domain is large enough
to be of interest climatologically and is typical of a
regional study. We shall examine the EOF’s of the
field F(f) generated by (27) restricted to the patch.
The EOF’s in this case are not the spherical har-
monics but an orthonormal set defined only on the

(28)
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FIG. 1. Standard deviation spectrum of spherical harmonic com-
ponents of the random field used in covering the sphere for the
numerical example of Section 4. The field is defined by (27) and
(28).

patch and satisfying (2) with the integral so re-
stricted.

The patch (20-60°N and 100° longitude) is rep-
resented by a grid of 189 points. In our computations
we have omitted the area metric factors in the co-
variance matrix (13), hence we must caution the
reader again about relating the results directly to the
500 mb surface. The results we obtain satisfactorily
illustrate the sampling theory.

The exact covariance matrix can be computed
from the exact covariance statistics with the formula
(27) and (28) for the grid points on the patch. After
this is done the exact eigenvectors may be computed
numerically. Fig. 2 shows coarse contour maps of the
first four EOF’s for this field. Note that the EOF’s
are left-right symmetric (because of the left-right
symmetry of the patch) but not up—down symmetric
because of the spherical geometry. Also shown above
each pattern is the corresponding eigenvalue A,. It
is especially noteworthy that (A; — A;)/A; =~ 0.02
is small compared to the other separations. A sample
covariance matrix can be computed from a collection
of N realizations of the field on the patch, leading
to a set of sample EOF’s. Figs. 3a—c show the first
four sample EOF’s from three experiments, each
experiment having N = 300 realizations. Evidently
the six sets of sample EOF’s vary considerably from
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Fi1G. 2. The first four exact EOF patterns for the field (27)
restricted to a patch on the sphere (20 to 60°N and 100° of width
in longitude). The number above each contour map is the exact
eigenvalue associated with the corresponding EOF pattern.

each other and from the exact EOF’s in Fig. 2. For
N = 300 we can estimate from (24) that the sampling
error in the first four eigenvalues is typically about
12(2/300)'/> = 0.98 or

6\ =~ 1.0, N = 300.

In Fig. 4 we illustrate schematically the spacing of
eigenvalues with error bars indicative of the sampling
error +6A. To the extent that the large N treatment
of the statistics is valid, sample eigenvalues should
lie within the error bars ~68% of the time.

Fig. 4 also shows the error bars for N = 1000, and
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a corresponding group of N = 1000 sample EOF’s
are mapped in Fig. 5a, b, c. As can be seen in Fig.
4 the sampling errors in this case are smaller than
the spacing for « = 1 and 2 but still larger than the
spacing for &« = 3 and 4. This is reflected in the
sample EOF’s of Fig. 5. In fact many thousands of
realizations would be necessary to resolve the EOF’s
for « = 3 and 4.

5. Conclusions

In this paper we have reviewed some properties of
EOF’s, shown how they may be computed from grid
point information, and used standard linear analysis
to estimate sampling errors. The discussion has fo-
cussed on the application to climatology where the
EOF’s are considered to be a manifestation of the
parent probability distribution. Any secular changes
in time of the EOF’s would indicate climatic change.
Unfortunately, the problem of detecting such a
change is complicated by the sampling errors in-
curred in estimating the shapes of the EOF’s. We
suggest a rule of thumb for estimating the sampling
errors. The rule is simply that if the sampling error
of a particular eigenvalue A[6X ~ XM(2/N)'/?] is com-
parable to or larger than the spacing between A and
a neighboring eigenvalue, then the sampling errors
for the EOF associated with A will be comparable
to the size of the neighboring EOF. The interpre-
tation is that if a group of true eigenvalues lie within
one or two 8\ of each other, then they form an “ef-
fectively degenerate multiplet,” and sample eigen-
vectors are a random mixture of the true eigenvec-
tors. The ambiguity in choosing the proper linear
combination within the multiplet leads to enhanced
sampling error.

The example shown in this paper suggests that in
many cases of climatological interest the sampling
errors are unacceptably large for samples of a few
hundred independent realizations. In fact, depending
upon the spectrum of eigenvalues thousands of re-
alizations may be necessary even to resolve the cor-
rect number of maxima and minima for the EOF’s.
Each EOF will have different sampling requirements
depending upon the nearness of neighboring eigen-
values. Wallace and Gutzler (1981) provide another
example of the variability of EOF patterns from one
sample to another in their investigation of EOF’s for
the Northern Hemisphere wintertime geopotential
height field. The rule of thumb described here in-
dicates that the first two pairs of EOF’s derived from
the record available to them are likely to be mixed
by sampling fluctuations, and this is borne out in
their analysis of a similar but independent record.

Of course, in many applications one EOF will
stand out, accounting for a large part of the variance.
Such “stand out” EOF’s will have small sampling
errors (AX large, 6\ small) and often can be related
to some physical inhomogeneity in the problem. We
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FIG. 3a, b, ¢. The columns are three separate N = 300 sample estimates of the exact EOF’s shown in Fig. 2. Above each sample
EOF is the corresponding sample eigenvalue. Note that the intersample variability is so large that the true patterns are scarcely

recognizable.

have examined some cases (not discussed here) of
this type with an “island” in the patch contributing
enhanced variability within its borders. Our rule of
thumb worked as expected with a stand-out EOF
showing small sampling errors but the others showing
errors in accord with the rule.

We should note that often one is not especially
interested in the shapes of the EOF’s per se. In many
applications one may wish only to have a convenient
basis set for representing data. The sample EOF’s
still form a complete basis set and a subsum may
account for about as much variance as the corre-
sponding subsum of true EOF’s. The problem fo-
cussed upon in this paper occurs when near multiplets
get mixed by sampling error. So long as all of the
mixed multiplet members are included there is no
special problem in representing data at the same level
of fit. However, in choosing the point of truncation,
one should take care that it does not fall in the middle
of an “effective multiplet” created by the sampling
problem, since there is no justification for choosing
to keep part of the multiplet and discarding the rest.
Other than this, the rule of thumb unfortunately

provides no guidance in selecting a truncation point

14.0 -

13.0

120+

Mo

100~

9.0+

STANDARD
ERROR
TRUE
EIGENVALUE

F1G. 4. Schematic diagram of the first four eigenvalues A, cor-
responding to the exact patterns of Fig. 2. The error bars represent
the standard error (one standard deviation error due to sampling)

for each eigenvalue. For N =

300 (left) the standard error.is

comparable to or larger than the eigenvalue spacing for all four
eigenvalues, whereas for N = 1000 (right) A, and A, are resolved
but A; and A, still are close compared to the sampling error.
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FIG. 5a, b, c. As in Fig. 3 except N = 1000. Note that in this case EOF’s one and two look like
their exact counterparts in Fig, 2, but EOF’s three and four are still mixed.

for using a subset of EOF’s to represent a large data
set efficiently. Additional assumptions about the na-
ture of the “noise” in the data must be made.
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