VOL. 110, NO. 1

MONTHLY WEATHER REVIEW

JANUARY 1982

A Signiﬁcance Test for Principal Components Applied to a Cyclone Climatology

JAMES E. OVERLAND AND R. W. PREISENDORFER
Pacific Marine Environmental Laboratory/NOAA, Seattle, WA 98105

(Manuscript received 27 April 1981, in final form 4 December 1981)

ABSTRACT

A technique is presented for selection of principal components for which the geophysical signal is greater
than the level of noise. The level of noise is simulated by repeated sampling of principal components computed
from a spatially and temporally uncorrelated random process. By contrasting the application of principal
components based upon the covariance matrix and correlation matrix for a given data set of cyclone
frequencies, it is shown that the former is more suitable to fitting data and locating the individual variables
that represent large variance in the record, while the latter is more suitable for resolving spatial oscillations

such as the movement of primary storm tracks.

1. Introduction

During the development of a set of indices to relate
cyclone climatology to interannual variability of sea-
ice extent in the Bering Sea (Overland and Pease,
1982), an empirical orthogonal function (EOF) anal-
ysis was performed on the spatial correlation matrix
of the number of cyclones transiting through 56 2°
latitude X 4° longitude cells during the ice-growth
season, October-February, for 23 years—1957/58
through 1979/80. The first three EOF’s of the Bering
Sea data set are shown in Fig. 1. The first EOF shows
a northwest-southeast negative correlation of cy-
clone counts which is similar to variation in cyclone
tracks implied by the North Pacific Oscillation
(Walker and Bliss, 1932). Plausible physical inter-
pretation can be suggested for the second and third
EOF’s, particularly the third, which shows a Siberian
versus Alaskan preference for northward propagat-
ing cyclones.

The need for some form of EOF selection rule in
geophysical studies has become apparent in recent
years as an increasing number of researchers have
used principal component analysis to study large data
sets in meteorological and oceanographic settings.
This method of analysis unfortunately is potentially
dangerous in the sense that too much is often re-
quired of it or, worse yet, read into its results. The
situation is similar to inferring geophysical conclu-
sions from a correlation, regression analysis or Fou-
rier spectral decomposition of a time series. The in-
tent of this note is to demonstrate a selection rule
as applied to the Bering Sea data set for determining
if the eigenvalues of an EOF analysis of a geophysical
data set can be distinguished from those produced
from a spatially and temporally uncorrelated random

process. We interpret the rule as indicating that
physical interpretation of EOF’s is suspect when the
corresponding geophysical eigenvalue is less than one
generated from the random data set, unless alternate
significance measures are employed. The selection
rule presented and applied below is but one of a set
of rules recently devised and tested in Preisendorfer
et al. (1981). In the latter study there was also a
brief review of some other selection rules devised in
the field of psychometry where similar problems
have been encountered for at least 50 years.

2. Application of the selection rule

Preisendorfer and Barnett (1977) suggested a
Monte Carlo technique for selecting eigenvalues in
an EOF analysis for which the geophysical signal is
above the level of noise. Let d;, j =1, ..., p, be the
eigenvalues of the spatial correlation matrix ®(x, x’)
computed from »n data sets, such that d,
>d, - -+ > d, We form the normalized eigenvalue
statistic

14
71_/=d1(§:1 dj)—]s j=11'~')p' (1)

=
We now form the null hypothesis that the geophys-
ical data set is randomly drawn from a population
of uncorrelated gaussian variables. Use a random
number generator to generate independent sequences
of length n for p independent gaussian variables of
zero mean and unit variance and compute the cor-
relation matrix. Compute the eigenvalues of the cor-
relation matrix and repeat the experiment (say) one
hundred times. If 67, j = 1, - - - p, is the set of eigen-
values produced by the rth Monte Carlo experiment,
the statistic analogous to (1) is
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Fi1G. 1. Contours of the first three empirical orthogonal functions
(EOF) of the correlation matrix of the Bering Sea cyclone data
set.
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TABLE 1. Values of U$® for selected values of p and n.

n

P 20 60 100 200 . 1000
9 j=12978 29.78 18.33  15.89 13.11
j=2 2200 17.33 15.67 14.33 12.44
j=317.89 15.00 1411 13.22 12.11

Jj=4 1467 13.22 12.78  12.33 11.67

Jj=5 1156 11.44 11.56  11.56 11.33

36 j=1 1500 8.69 6.94 5.64 3.94
Jj=2 12,67 7.58 6.47 5.14 3.78

Jj=3 1094 7.03 5.92 4.89 3.69

j=4 983 6.47 5.56 4.69 3.58

j=5 872 6.03 5.25 4.47 3.50

64 j=1 12.00 6.50 5.03 3.86 2.47
, Jj =2 10.69 5.89 4.61 3.58 2.38
j=3 950 5.38 4.34 3.44 233

j=4 878 5.08 4.19 3.28 2.27

j=5 1791 4.77 391 317 2.23

100 j=1 1045 5.31 3.98 291 1.74
' j=2 929 4.81 3.72 275 1.69
j=3 857 4.55 3.55 2.65 1.66

j=4 1795 4.30 3.39 2.56 1.62

j=5 139 414 3.23 2.47 1.59

.

Compare T; with the distribution represented by the
pair of values [U3, U}®] foreach j =1, ..., p. Rule
N (Preisendorfer and Barnett, 1977) is given by the
following: Terminate the sequence T; at j = p/, where
P is the largest integer m such that T, exceeds
U;:. A table of U}, j = 1, 5, is given in Table 1 for
a range of values of n and p.

For the first five EOF’s of the Bering Sea data set,
Table 2 lists 7, the normalized eigenvalues, and
T,/U?, the ratio which determines the application
of rule N. The first EOF represents 22.3% of the
variance while the second, third and fourth represent
9.9, 9.1 and 8.1%. While EOF’s 2-5 represent a sig-
nificant percentage of the total variance of the orig-
inal data set fit by these functions, they fail rule N.
We conclude that except for the first, we cannot dis-
tinguish the present meteorological eigenvalues from
ones generated by a spatially and temporalily uncor-
related random process.

As an additional example we apply rule N to the
data set generated by Hayden (1981) who expanded
annual cyclone frequencies for 74 cells covering

TABLE 2. Summary of normalized eigenvalues of the correlation
matrix of the Bering Sea cyclone data set; p = 56, n = 23. Rule
N for selection of geophysical eigenvalues is satisfied for values
of T;/U3® > 1.0.

J
1 2 3 4 5
T, (X100) 223 9.9 9.1 8.1 6.5
T,/U 1.91 097 099 098 0.86
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TaBLE 3. Summary of normalized eigenvalues of the correlation
matrix from the data set of Hayden (1981); p = 74, n = 96.

J
1 2 3 4
T, (X100) 28.0 17.3 6.6 5.5
T,/ U 5.77 3.81 1.53 1.40

eastern North America and the western North At-
lantic for 94 years, 1885-1978, in an EOF analysis
also using the correlation matrix. We simulated a
random process, uncorrelated over 74 spatial points
and independently sampled 94 times, and repeated
this simulation 100 times to compute the U}® values
associated with Hayden’s data set. Values of T and
T;/U% for Hayden’s computation are shown in Table
3. The percent variance accounted for by the largest
eigenvalue for both studies is close: 22% versus 28%.
The first four EOF’s in Hayden’s study appear to
contain meteorological content distinguished from
noise, based upon rule N. Hence, attempts at phys-
ical interpretation of these four EOF’s are reason-
able.

The forms of (1) and (2) also apply to principal
component analysis via the covariance matrix. The
geophysical variables are first centered about their
- mean value. The first EOF of the covariance matrix
for the Bering Sea data set is shown in Fig. 2. The
normalized eigenvalues and the results of applying
rule N based upon a set of randomly generated co-
variance matrices are listed in Table 4. The primary
difference between the first geophysical eigenvector
of the covariance matrix and the first geophysical
eigenvector of the correlation matrix is that the mag-
nitude of relative maxima is greater with the co-
variance matrix. The first two principal components
of the data set obtained by the covariance matrix
satisfy rule N, although only the first one is much
larger than that generated by noise.

3. Discussion

Comparison of results of the EOQF analysis applied
to the correlation and covariance matrix of the same
data set illustrates an important point in choosing
between one or the other approach for application
to a geophysical problem. Since the sum of the ei-
genvalues equals the trace of the matrix, the prin-
cipal components in the covariance approach are
affected by the variance of each spatial variable as
well as the covariance between variables. The co-
variance approach would therefore be particularly
useful in locating specific regions with high variance
relative to the rest of the field; an example would be
in resolving the spatial distribution of sea-surface
temperature anomalies. In an application of the cor-
relation matrix the sum of the eigenvalues will again
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F1G. 2. Contours of the first empirical orthogonal function of
the covariance matrix of the Bering Sea cyclone data set.

equal the trace of the matrix, but the contribution
toward the vectorial direction represented by the
EOF’s is exclusively from the off-diagonal elements.
The spatial-pattern-detection property of the corre-
lation approach, as displayed in contour maps of the
EOF modes, is advantageous in such applications as
the cyclone climatology, in which one is specifically
interested in spatial oscillations or variations of pri-
mary storm tracks.

The difference between using covariance and cor-
relation may then have relevance in applications of
rule N. The part of the rule based on the Monte
Carlo experiment can be interpreted as finding the
lengths of the axes of p-dimensional ellipsoid gen-
erated by spatially uncorrelated noise. This is com-
pared with the ellipsoid generated from the geo-
physical data set with the length of the axes equal
to twice the square root of variance accounted for
by each principal component. Because variances of
individual variables do not contribute to increasing
the length of the axes in the correlation approach,
rule N should be a good test for spatial correlation
in the geophysical field. In comparing Table 2 with
Table 4, the magnitudes T, and U?® are both greater
for the covariance case than the correlation case in
this sample. Thus, the rule seems as conservative
when applied to the covariance matrix as when ap-
plied to the correlation matrix.

TABLE 4. Summary of normalized eigenvalues of the covariance
matrix of the Bering Sea data set; p = 56, n = 23,

J

1 2 3 4 5
T; (X100) 23.6 10.6 8.7 8.2 6.3
T,/JU? 1.88 1.01 0.91 0.96 0.82




4 MONTHLY WEATHER REVIEW

‘4. Conclusion

We have presented a test for principal components
which is designed to determine if the eigenvalues of
a geophysical data set can be distinguished from one
drawn at random. The test is based upon examination
of the eigenvalues derived from prenormalized data
(correlation matrix) or those based upon the covari-
ance matrix compared to eigenvalues generated from
gaussian noise and is referred to as a dominant-vari-
ance selection procedure in Preisendorfer et al.
(1981). It should be noted, however, that even if a
particular principal component fails rule N, this need
not eliminate the possibility that other criteria, such
as the dbility of the particular principal component
to track closely time evolution of a geophysical pro-
cess in the presence of large noise variance, may still
be physically relevant. This option, called a time-
history selection procedure, is discussed in Preisen-
dorfer et al. (1981).

When rule N is applied to the case of the covari-
ance matrix, the magnitudes of the normalized ei-
genvalues are influenced by both spatial correlation
and the variance of individual variables. With the
correlation matrix only spatial correlation contrib-
utes to the magnitude of the geophysical signal rel-
ative to one sampled from a spatially and temporally
uncorrelated random process. In representing the
variance of large data sets the covariance matrix is
preferred; application of rule N will lead to the re-
duction of the dimension of the representation. The
correlation matrix has certain advantages in resolv-
ing relationships between variables.

We consider that the question of significance is
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important for geophysical interpretation of EOF’s
and note that several recent MWR articles using
EOF analysis do not address this issue. We hope that
our note will provide the forum for further discussion
of candidate selection rules and their geophysical in-
terpretation so that a set of potentially good selection
rules can be established.
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