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velet theory provides a 
unified framework for a 
number of techniques 

which had been developed inde­
pendently for various signal 
processing applications. For ex­
ample. multiresolution signal 
processing. used in computer 
vision; subband coding, developed 
for speech and image compression; 
and wavelet series expansions, 
developed in applied mathematics, 
have been recently recognized as 
different views of a single theory. 

In fact, wavelet theory covers 
quite a large area. It treats both the 

continuous and the discrete-time cases. It provides very 
general techniques that can be applied to many tasks 
in signal processing, and therefore has numerous 
potential applications. 

In particular, the Wavelet Transform (Wf) is of inter­
est for the analysis of non-stationary signals, because it 
provides an altemative to the classical Short-Time 
Fourier Transform (STFT) or Gabor transform [GAB46, 
ALL77, POR80]. The basic difference is as follows. In 
contrast to the STFT, which uses a single analysis 
window, the WT uses short windows at high frequencies 
and long windows at low frequencies. This is in the spirit 
of so-called "constant-QH or constant relative 
bandwidth frequency analysis. The WT is also related 
to time-frequency analysis based on the Wigner-Ville 
distribution [FLA89, FLA90, RI090a]. 
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For some applications it is desirable to see the WT as 
a signal decomposition onto a set of basis functions. In 
fact, basis functions called wavelets always underlie the 
wavelet analysis. They are obtained from a single 
prototype wavelet by dilations and contractions (seal-
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ings) as well as shifts. The prototype wavelet can be 
thought of as a bandpass filter. and the constant-Q 
property of the other bandpass filters (wavelets) follows 
because they are scaled versions of the prototype. 

Therefore, in a WT, the notion of scale is introduced 
as an altemative to frequency, leading to a so-called 
time-scale representation. This means that a signal is 
mapped into a time-scale plane (the equivalent of the 
time-frequency plane used in the STFT). 

There are several types of wavelet transforms, and, 
depending on the application, one may be preferred to 
the others. For a continuous input signal, the time and 
scale parameters can be continuous [GR089], leading 
to the Continuous Wavelet Transform (CWT). They may 
as well be discrete [DAU88, MAL89b, MEY89, DAU90a], 
leading to a Wavelet Series expansion. Finally, the 
wavelet transform can be defined for discrete-time sig­
nals [DAU88, R1090b, VET90b], leading to a Discrete 
Wavelet Transform (DWT). In the latter case it uses 
multirate signal processing techniques [CR083] and is 
related to subband coding schemes used in speech and 
image compression. Notice the analogy with the (Con­
tinuous) Fourier Transform, Fourier Series, and the 
Discrete Fourier Transform. 

Wavelet theory has been developed as a unifYing 
framework only recently, although similar ideas and 
constructions took place as early as the beginning of 
the century [HAAlO, FRA28, LIT37, CAL64]. The idea of 
looking at a signal at various scales and analyzing it 
with various resolutions has in fact emerged inde­
pendently in many different fields of mathematics, 
physics and engineering. In the mid-eighties, re­
searchers of the "French school," lead by a geophysicist, 
a theoretical physicist and a mathematician (namely, 
Morlet, Grossmann, and Meyer), built strong mathe­
matical foundations around the subject and named 
their work "Ondelettes" (Wavelets). They also interacted 
considerably with other fields. 

The attention of the signal processing community 
was soon caught when Daubechies and Mallat, in ad­
dition to their contribution to the theory of wavelets, 
established connections to discrete signal processing 
results [DAU88], [MAL89a]. Since then, a number of 
theoretical, as well as practical contributions have been 
made on various aspects of WT's, and the subject is 
growing rapidly [WAV89], [IT92]. 

The present paper is meant both as a review and as 
a tutorial. It covers the main definitions and properties 
of wavelet transforms, shows connections among the 
various fields where results have been developed, and 
focuses on signal processing applications. Its purpose 
is to present a simple, synthetic view of wavelet theory, 
with an easy-to-read, non-rigorous flavor. An extensive 
bibliography is provided for the reader who wants to go 
into more detail on a particular subject. 

NON-STATIONARY SIGNAL 
ANALYSIS 

The aim of signal analysis is to extract relevant 
information from a signal by transforming it. Some 
methods make a priori assumptions on the signal to be 
analyzed: this may yield sharp results if these assump­
tions are valid, but is obviously not of general ap­
plicability. In this paper we focus on methods that are 
applicable to any general signal. In addition, we con­
sider invertible transformations. The analysis thus un­
ambiguously represents the signal, and more involved 
operations such as parameter estimation, coding and 
pattem recognition can be performed on the "transform 
side," where relevant properties may be more evident. 

Such transforms have been applied to stationary 
signals, that is, signals whose properties do not evolve 
in time (the notion of stationarity is formalized precisely 
in the statistical signal processing literature). For such 
signals x(t). the natural "stationary transform" is the 
well-known Fourier transform [FOU88]: 

X (f)=(: x(t) e-2J rrfldt (l) 

The analysis coefficients XUJ define the notion of 
global frequency fin a signal. As shown in (l). they are 
computed as inner products of the signal with sinewave 
basis functions of infinite duration. As a result, Fourier 
analysis works well if x( t) is composed of a few stationary 
components (e.g., sinewaves). However, any abrupt 
change in time in a non-stationary signal x(t) is spread 
out over the whole frequency axis in X(j). Therefore, an 
analysis adapted to nonstationary signals requires more 
than the Fourier Transform. 

The usual approach is to introduce time dependency 
in the Fourier analysis while preserving linearity. The 
idea is to introduce a "local frequency" parameter (local 
in time) so that the "local" Fourier Transform looks at 
the signal through a window over which the signal is 
approximately stationary. Another, equivalent way is to 
modifY the sinewave basis functions used in the Fourier 
Transform to basis functions which are more con­
centrated in time (but less concentrated in frequency). 

SCALE VERSUS FREQUENCY 

The Short-Time Fourier Transform: 
Analysis with Fixed Resolution. 

The "instantaneous frequency" [FLA89] has often 
been considered as a way to introduce frequency de-
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Fig. 1. Time:[requency plane corresponding to the Short-Time 
Fourier Transform. It can be seen either as a succession of 
Fourier Transforms of a windowed segment of the signal (ver­
tical stripes) or as a modulated analysis ftlter bank (horizontal 
stripes). 

pendence on time. If the signal is not narrow-band, 
however, the instantaneous frequency averages dif­
ferent spectral components in time. To become accurate 
in time, we therefore need a two-dimensional time-fre­
quency representation S(t,j) of the signal x{t) composed 
of spectral characteristics depending on time, the local 
frequency f being defined through an appropriate 
definition of S(t,j). Such a representation is similar to 
the notation used in a musical score, which also shows 
"frequencies" played in time. 

The Fourier Transform (1) was first adapted by Gabor 
[GAB46] to define S(t,j) as follows. Consider a signal x{t), 

a) 
frequency 

! 

I I 

I 

I 

I time 

c) 

and assume it is stationary when seen through a win­
dow g(t) of limited extent, centered at time location t. 
The Fourier Transform (1) of the windowed signals 

x(t) g'(t- t) yields the Short-Time Fourier Transform 
(STFT) 

STFT(t, j) = J x(t) g'(t- t) e-Zj rrft dt (2) 

which maps the signal into a two-dimensional function 
in a time-frequency plane (t,j). Gabor originally only 
defined a synthesis formula, but the analysis given in 
(2) follows easily. 

The parameter f in (2) is similar to the Fourier 
frequency and many properties of the Fourier transform 
carry over to the STFT. However, the analysis here 
depends critically on the choice of the window g(t). 

Figure 1 shows vertical stripes in the time-frequency 
plane, illustrating this "windowing of the signal" view of 
the STFT. Given a version of the signal windowed 
around time t, one computes all "frequencies" of the 
STFT. 

An alternative view is based on a filter bank inter­
pretation of the same process. At a given frequency f, 
(2) amounts to filtering the signal "at all times" with a 
bandpass filter having as impulse response the window 
function modulated to that frequency. This is shown as 
the horizontal stripes in Fig. 1. Thus, the STFT may be 
seen as a modulated filter bank [ALL77], [POR80]. 

From this dual interpretation, a possible drawback 
related to the time and frequency resolution can be 
shown. Consider the ability of the STFT to discriminate 
between two pure sinusoids. Given a window function 
g(t) and its Fourier transform G{jj, define the 
"bandwidth" t:.j of the filter as 

b) 
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Fig. 2. Basis functions and time-frequency resolution of the Short-Time Fourier Transform (STFI) and the Wavelet Transform 
(WT). The tiles represent the essential concentration in the time-frequency plane of a given basis function. (a) Coverage of the 
time:frequency plane for the STFT, (b) for the WT. (c) Corresponding basis functions for the STFT, (d)jor the WT ("wavelets"). 
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IJ 2 I G(f) 12 df 
/!,. 12 = ~~----=~______:__ 

f1G(f)l 2 qf 
(3) 

where the denominator is the energy of g(d. Two 
sinusoids will be discriminated only if they are more 
than L1j apart (This is an rms measure, and others are 
possible). Thus, the resolution in frequency of the STIT 
analysis is given by 4f. Similarly, the spread in time is 
given by Mas 

(4) 

where the denominator is again the energy of g(t). Two 
pulses in time can be discriminated only if they are more 
than M apart. 

Now, resolution in time and frequency cannot be 
arbitrarily small, because their product is lower 
bounded. 

Time - Bandwidth product = M L1j"?. _l_ 
4rr 

(5) 

This is referred to as the uncertainty principle, or 
Heisenberg inequality. It means that one can only trade 
time resolution for frequency resolution, or vice versa. 
Gaussian windows are therefore often used since they 
meet the bound with equality [GAB46]. 

More important is that once a window has been 
chosen for the STIT, then the time-frequency resolution 
given by (3), (4) is fixed over the entire time-frequency 
plane (since the same window is used at all frequencies). 
This is shown in Fig. 2a, while Fig. 2c shows the 
associated basis functions of the STIT. For example, if 
the signal is composed of small bursts associated with 
long quasi-stationary components, then each type of 

component can be analyzed with good time resolution 
or frequency resolution, but not both. 

The Continuous Wavelet Transform: 
A Multiresolution Analysis. 

To overcome the resolution limitation of the STIT, 
one can imagine letting the resolution M and 11jvary in 
the time-frequency plane in order to obtain a multi­
resolution analysis. Intuitively, when the analysis is 
viewed as a filter bank. the time resolution must in­
crease with the central frequency of the analysis filters. 
We therefore impose that L1fis proportional to f. or 

(6) 

where c is a constant. The analysis filter bank is then 
composed of band-pass filters with constant relative 
bandwidth (so-called "constant-Q" analysis). Another 
way to say this is that instead of the frequency respon­
ses of the analysis filter being regularly spaced over the 
frequency axis (as for the STFT case). they are regularly 
spread in a logarithmic scale (see Fig. 3). This kind of 
filter bank is used, for example, for modeling the fre­
quency response of the cochlea situated in the inner ear 
and is therefore adapted to auditory perception, e.g. of 
music: filters satisfYing (6) are naturally distributed into 
octaves. 

When (6) is satisfied, we see that 11jand therefore also 
M changes with the center frequency of the analysis 
filter. Of course, they still satisfY the Heisenberg ine­
quality (5). but now, the time resolution becomes ar­
bitrarily good at high frequencies. while the frequency 
resolution becomes arbitrarily good at low frequencies. 
For example, two very close short bursts can always be 
eventually separated in the analysis by going up to 

a) Constant Bandwidth (STFT Case) 

fo 2fo 3fo 4fo Sfo 6fo ?fo 8fo 9fo 

Constant Relative Bandwidth (WT Case) 
b) 

fo 2fo 4fo Bfo 

Fig. 3. Division of the frequency domain (a) for the STFT (uniform coverage) and (b) for the WT (logarithmic coverage). 
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Box 1: 
The Notion of Scale and Resolution 

First, recall that when a functionj{t) is scaled: 

j{t) ~fiat), where a> 0, 

then it is contracted if a > 1 and expanded if a < 1 
Now, the CWf can be written either as 

CWfx(t,a) = _f::- I x(t) h*(t-t)dt 
"Va a 

or, by a change of variable, as 

CWfx(t,a) = ra I x(at) h*(t- .'£)dt 
a 

(Bl.1) 

(Bl.2) 

The interpretation of (B 1. 1) is that as the scale 

increases, the filter impulse response 1 t-;:) be­

comes spread out in time, and takes only long-time 
behavior into account. Equivalently, (Bl.2) indi­
cates that as the scale grows, an increasingly con­
tracted version of the signal is seen through a 
constant length filter. That is, the scale factor a has 
the interpretation of the scale in maps. Very large 
scales mean global views, while very small scales 
mean detailed views. 

A related but different notion is that of resolu­
tion. The resolution of a signal is linked to its 
frequency content. For example, lowpass filtering a 
signal keeps its scale, but reduces its resolution. 

Scale change of continuous time signals does not 
alter their resolution, since the scale change can be 
reversed. However, in discrete-time signals, in­
creasing the scale in the analysis involves subsam­
pling, which automatically reduces the resolution. 
Decreasing the scale (which involves upsampling) 
can be undone, and does not change the resolution. 
The interplay of scale and resolution changes in 
discrete-time signals is illustrated in Fig. 9 and fully 
explained in [RI090b], [VET90b]. 

higher analysis frequencies in order to increase time 
resolution (see Fig. 2b). This kind of analysis of course 
works best if the signal is composed of high frequency 
components of short duration plus low frequency com­
ponents of long duration, which is often the case with 
signals encountered in practice. 

A generalization of the concept of changing resolu­
tion at different frequencies is obtained with so-called 
"wavelet packets" [WIC89], where arbitrary time-fre­
quency resolutions (within the uncertainty bound (5)) 
are chosen depending on the signal. 

The Continuous Wavelet Transfonn (CWf) exactly 
follows the above ideas while adding a simplification: all 
impulse responses of the filter bank are defined as 
scaled (i.e. stretched or compressed) versions of the 
same prototype h(t), i.e .. 

1 t 
ha(t) = -1} I al h{-a_) 

where a is a scale factor (the constant 1 ;fflil is used for 
energy normalization). This results in the definition of 
the cwr: 

CWfx(t, a)= -1} I ~I I x(t) hf ~ t rt (7) 

Since the same prototype h(t), called the basic 
wavelet, is used for all of the filter impulse responses, 
no specific scale is privileged, i.e. the wavelet analysis 
is self-similar at all scales. Moreover, this simplification 
is useful when deriving mathematical properties of the 
cwr. 

To make the connection with the modulated window 
used in the STFT clearer, the basic wavelet h(t) in (7) 
could be chosen as a modulated window (GOU84, 
GR084, GR089] 

h(t) = g(t) e- 2jllfot 

Then the frequency responses of the analysis filters 
indeed satisfy (6) with the identification 

Jo a=-
f 

But more generally, h(t) can be any band-pass func­
tion and the scheme still works. In particular one can 
dispense with complex-valued transforms and deal only 
with real-valued ones. 

It is important to note that here, the local frequency 
f = afo has little to do with that described for the STFT: 
indeed, it is associated with the scaling scheme (see Box 
1). As a result, this local frequency, whose definition 
depends on the basic wavelet, is no longer linked to 
frequency modulation (as was the case for the STFT) but 
is now related to time-scalings. This is the reason why 
the terminology "scale" is often preferred to "frequency" 
for the cwr. the word "frequency" being reserved for the 
STFT. Note that we define scale in wavelet analysis like 
the scale in geographical maps: since the filter bank 
impulse responses in (7) are dilated as scale increases, 
large scale corresponds to contracted signals, while 
small scale corresponds to dilated signals. 

WAVELET ANALYSIS AND SYNTHESIS 

Another way to introduce the cwr is to define 
wavelets as basis functions. In fact, basis functions 
already appear in the preceding definition (7) when one 
sees it as an inner product of the form 

CWfx(t, a)= I x(t) ~;r(t) dt 

which measures the "similarity" between the signal and 
the basis functions 
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Box 2: 
STFTs and CWTs as 
Cross-Ambiguity Functions 

The inner product is often used as a similarity 
measurement, and because both STFf's and CWf's 
are inner products, they appear in several detec­
tion/estimation problems. Consider, for example, 
the problem of estimating the location and velocity 
of some target in radar or sonar applications. The 
estimation procedure consists in first emitting a 
known signal h{ I}. In the presence of a target, this 
signal will return to the source (received signal x1 t)) 
with a certain delay t, due to the target's location, 
and a certain distortion (Doppler effect), due to the 
target's velocity. 

For narrow-band signals, the Doppler effect 
amounts to a single frequency shift Jo and the 
characteristics of the target will be determined by 
maximizing the cross-correlation function (called 
"narrow-band cross-ambiguity function") [W0053] 

f xtt) h{t- t) e-2fttfot dt = STFf(tJ) 

For wide-band signals, however, the Doppler 
frequency shift varies in the signal's spectrum, 
causing a stretching or a compression in the signal. 
The estimator thus becomes the "wide-band cross­
ambiguity function" [SPE67]. [AUS90] 

1 f h(t-t) ,1 I al xtt) ·r~1 dt = CWfx(t,a) 

As a result, in both cases, the "maximum 
likelihood" estimator takes the form of a STFf or a 
cwr. i.e. of an inner product between the received 
signal and either STFf or wavelet basis functions. , 
The basis function which best fits the signal is used 
to estimate the parameters. 

Note that, although the wide-band cross-am­
biguity function is a cwr. for physical reasons, the 
dilation parameter a stays on the order of mag­
nitude of 1, whereas it may cover several octaves 
when used in signal analysis [FLA89]. 

called wavelets. The wavelets are scaled and translated 
versions of the basic wavelet prototype h(t) (see Fig. 2d). 

Of course, basis functions can be considered for the 
STFf as well. For both the STFf and the cwr. the 
sinewaves basis functions of the Fourier Transform are 
replaced by more localized reference signals labelled by 
time and frequency (or scale) parameters. In fact both 
transforms may be interpreted as special cases of the 
cross-ambiguity function used in radar or sonar 
processing (see Box 2). 

The wavelet analysis results in a set of wavelet 
coefficients which indicate how close the signal is to a 

particular basis function. Thus, we expect that any 
general signal can be represented as a decomposition 
into wavelets, i.e. that the original waveform is syn­
thesized by adding elementary building blocks, of con­
stant shape but different size and amplitude. Another 
way to say this is that we want the continuously labelled 
wavelets ha. t(t) to behave just like an orthogonal basis 
[MEY90]. The analysis is done by computing inner 
products, and the synthesis consists of summing up all 
the orthogonal projections of the signal onto the 
wavelets. 

f f dadt 
x{t) = c CWf(t,a) ha:r(t) ~2-

a>O a 
(8) 

where cis a constant that depends only on h(t). The 
measure in this integration is formally equivalent to dt 
df[GOU84]. We have assumed here that both signal and 
wavelets are either real-valued or complex analytic so 
that only positive dilations a > 0 have to be taken into 
account. Otherwise (8) is more complicated [GR084]. 

Of course, the ha, t(t) are certainly not orthogonal 
since they are very redundant (they are defined for 
continuously varying a and t). But surprisingly, the 
reconstruction formula (8) is indeed satisfied whenever 
h(t) is of finite energy and bandpass (which implies that 
it oscillates in time like a short wave, hence the name 
"wavelet'"). More precisely, if h(t) is assumed sufficiently 
regular. then the reconstruction condition is 

f h{t) dt = 0. 

Note that the reconstruction takes place only in the 
sense of the signal's energy. For example, a signal may 
be reconstructed only with zero mean since 

f h{t) dt = 0. In fact the type of convergence of (8) may 

be strengthened and is related to the numerical robust­
ness of the reconstruction [DAU90a]. 

Similar reconstruction can be considered for the 
STFf, and the similarity is remarkable [DAU90a]. How­
ever, in the STFf case, the reconstruction condition is 
less restrictive: only finite energy of the window is 
required. 

SCALOGRAMS 

The spectrogram, defined as the square modulus of 
the STFf, is a very common tool in signal analysis 
because it provides a distribution of the energy of the 
signal in the time-frequency plane. A similar distribu­
tion can be defined in the wavelet case. Since the cwr 
behaves like an orthonormal basis decomposition, it 
can be shown that it is isometric [GR084]. i.e., it 
preserves energy. We have 

J J1 CWf(t, a) 12 dt, :a= Ex 
a 

where Ex= J I x{ t) I 2 dt is the energy of the signal x1 t). 
This leads us to define the wavelet spectrogram, or 
scalogram, as the squared modulus of the cwr. It is a 
distribution of the energy of the signal in the time-scale 
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a) CWT 

c) 
CWT 

scale a =fo/f 

b) 

d) 

STFT 

to 

Fig. 4. Regions of influence of a Dirac pulse at t=to (a) for the CWT and (b) for the STFr: as well as of three sinusoids (of frequen­
ctes fo. 2fo. 4fo] for (c) the CWT and (d) the STFr. 

plane, associated with measure d-r:,~a. and thus ex-
a 

pressed in power per frequency unit, like the 
spectrogram. However, in contrast to the spectrogram, 
the energy of the signal is here distributed with different 
resolutions according to Fig. 2b. 

Figure 4 illustrates differences between a scalogram 
and a spectrogram. Figure 4a shows that the influence 
of the signal's behavior around t = to in the analysis is 
limited to a cone in the time-scale plane; it is therefore 
very "localized" around to for small scales. In the STFT 
case, the corresponding region of influence is as large 
as the extent of the analysis window over all frequen­
cies, as shown in Fig. 4b. Moreover, since the time-scale 
analysis is logarithmic in frequency, the area of in­
fluence of some pure frequency Join the signal increases 
with fo in a scalogram (Fig. 4c). whereas it remains 
constant in a spectrogram (Fig. 4d). 

Both the spectrogram and the scalogram produce a 
more or less easily interpretable visual two-dimensional 
representation of signals [GR089], where each pattem 
in the time-frequency or time-scale plane contributes to 
the global energy of the signal. However, such an energy 
representation has some disadvantages, too. For ex­
ample, the spectrogram, as well as the scalogram, 
cannot be inverted in general. Phase information is 
necessary to reconstruct the signal. Also, since both the 
spectrogram and the scalogram are bilinear functions 
of the analyzed signal, cross-terms appear as inter­
ferences between pattems in the time-frequency or 
time-scale plane [KAD91] and this may be undesirable. 

In the wavelet case, it has been also shown [GR089] 

that the phase representation more accurately reveals 
isolated, local bursts in a signal than the scalogram 
does (see Box 3). 

To illustrate the above points, Fig. 5 shows some 
examples of spectrograms and scalograms for synthetic 
signals and a speech signal (see Box 3). 

More involved energy representations can be 
developed for both time-frequency and time-scale 
[BER88, FLA90, RI090a], and a link between the 
spectrogram, the scalogram and the Wigner-Ville dis­
tribution can be established (see Box 4). 

WAVELET FRAMES AND 
ORTHONORMAL BASES 

Discretization of Time-Scale Parameters 

We have seen that the continuously labelled basis 
functions (wavelets) ha.-r:(t) behave in the wavelet 
analysis and synthesis just like an orthonormal basis. 
The following natural question arises; if we appropriate­
ly discretize the time-scale parameters a, -r:, can we 
obtain a true orthonormal basis? The answer, as we 
shall see, is that it depends on the choice of the basic 
wavelet h{t). 

There is a natural way to discretize the time-scale 
parameters a, -r: [DAU90a]; since two scales· ao < a1 

roughly correspond to two frequencies Jo > ]1, the 
wavelet coefficients at scale a1 can be subsampled at 
(fo/J!lth the rate of the coefficients at scale ao. according 
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BOX3: 
Spectrograms and Scalograms 

We present in Fig. 5 spectrograms and scalograms 
for some synthetic signals and a real signal. The 
signals are of length 384 samples, and the STIT uses 
a Gaussian-like window of length L = 128 samples. 
The scalogram is obtained with a Morlet wavelet (a 
complex sinusoid windowed with a Gaussian en­
velope) of length from 23 to 363 samples. 

The horizontal axis is time in both spectrograms 
and scalograms. The signal is shown on the top. The 
vertical axis is frequency in the spectrogram (high 
frequencies on top) and scale in the scalogram (small 
scale at the top). Compare these figures with Fig. 4, 
which indicates the axis system used, and gives the 
rough behavior for Diracs and sinewaves. 

First, Fig. 5.1 shows the analysis of two Diracs and 
two sinusoids with the STIT and the CWI'. Note how 
the Diracs are well time-localized at high frequencies 

in the scalogram. Figure 5.2 shows the analysis of 
three starting sinusoids with different starting times 
(a low frequency starts first, followed by a medium 
and a high frequency sinewave). Figure 5.3 shows the 
transforms of a chirp signal. Again, the transitions 
are well resolved at high frequencies in the scalogram. 
Finally, Fig. 5.4 shows the analysis of a segment of 
speech signal, where the onset of voicing is seen in 
both representations. 

Note that displaying scalograms is sometimes 
tricky, because parameters like display look-up tables 
(which map the scalogram value to a grey scale value 
on the screen) play an important but not always well 
understood role in the visual impression. Such 
problems are common in spectrogram displays as 
well. 

lamtttsmnut 

Fig. 5.1. Spectrogram nnd scalogramjor the S1FT Wld CWT analysis of two Dirac pulses 
Wld two sinusoids. {a) Magnitude of the SlFT. {b) Phase of the SlFT. {c) Amplitude of the 
WT. {d) Phase of the WT. 
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BOX 3: Spectrograms and Scalograms (continued) 

Fig. 5.2. Spectrogram and scalogram for the SfFT and CWT analysis of three sinusoids 
with staggered starting times. The low frequency one comes.first.jollowed by the medium 
and high frequency ones. (a) Magnitude of the SfFT. (b) Phase of the SfFT. (c) Amplitude of 
the WT. (d) Phase of the WT. 

Fig. 5.3. Spectrogram and scalogram for the STFT and CWT analysis of a chirp signal. (a) 
Magnitude of the STFT. (b) Phase of the SfFT. (c) Amplitude of the WT. (d) Phase of the WT. 
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BOX 3: Spectrograms and Sea log rams (continued) __ .. _ .... __ .,.,. ... 

Fig. 5.4. Spectrogram and scalogram for the SfFf and C\VT analysis of a segment of 
speech. including onset of voicing. (a) Magnitude of the STFT. (b) Phase of the STFf. (c) 
Amplitude of the \VT. (d) Phase of the \VT. 

to Nyquist's rule. We therefore choose to discretize the 
time-scale parameters on the sampling grid drawn in 

Fig. 7. That is. we have a = ad and b = k ad T. where j 
and k are integers. The corresponding wavelets are 

hj,k (t) = ciiJ12 h(cii} t- kT) (9) 

resulting in wavelet coefficients 

Cj.k =I x(t) hj,k(t) dt (10) 

An analogy is the following: assume that the wavelet 
analysis is like a microscope. First one chooses the 

magnification, that is, ao -J. Then one moves to the 
chosen location. Now, if one looks at very small details, 
then the chosen magnification is large and corresponds 

tojnegative and large. Then, ad Tcorresponds to small 
steps, which are used to catch small details. This 

justifies the choice b = k ad Tin (9). 
The reconstruction problem is to find ao. T, and h(t) 

such that 

x(t) "' c I. L,9 .k hj.k (t) 
j k 

(ll) 

where cis a constant that dues nut depend on the signal 
(compare with (8)). Evidently, if aO is close enough to l 
(and if T is small enough}, then the wavelet functions 

are overcomplete. Equation (ll) is then still very close 
to (8) and signal reconstruction takes place within 
non-restrictive conditions on h(t). On the other hand, if 
the sampling is sparse. e.g. the computation is done 
octave by octave (ao = 2). a true orthonormal basis will 
be obtained only for very special choices of h(t) 
[DAU90a. MEY90]. 

Wavelet Frames 

The theory of wavelet frames [DUF52. DAU90a] 
provides a general framework which covers the two 
extreme situations just mentioned. It therefore permits 
one to balance (i) redundancy. i.e. sampling density in 
Fig. 7. and (ii) restrictions on h(t) for the reconstruction 
scheme ( ll) to work. The trade-off is the following: if the 
redundancy is large (high "oversampling"). then only 
mild restrictions are put on the basis functions (9). But 
if the redundancy is small (i.e .. close to "critical" sam­
pling). then the basis functions are very constrained. 

The idea behind frames [DUF52] is based on the as­
sumption that the linear operator x(t) A cj.k. where cj.k is 
defined by (10). is bounded. with bounded inverse. The 
family of wavelet functions is then called a frame and is 
such that the energy of the wavelet coefficients cj.k (sum 
of their square moduli) relative to that of the signal lies 
between two positive "frames bounds" A and B. 

A Ex<; L I Cj.k 12 
<;HEx 

j.k 
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Box4: 
Merging Spectrogram, Scalogram, and Wigner Distribution into 
a Common Class of Energy Representations 

There has been considerable work in extending the 
spectrogram into more general time-frequency energy 
distributions TF(1:,jJ. These all have the basic property 
of distributing the energy of the signal all over the 
time-frequency plane, i.e., 

J J TF{'tJ) d1: df= J lx(t)l 2dt 

Among them, an alternative to the spectrogram for 
nonstationary signal analysis is the Wigner-Ville dis­
tribution [CLABO, BOU85, FLA89) 

J t • t 2' .R-
Wx('tj} = x('t +-)X ('t- -) e- <JltJ•dt 

2 2 

More generally, the whole class of time-frequency 
energy distributions has been fully described by 
Cohen [COH66), [COH89): they can all be seen as 
smoothed (or, more precisely, correlated) versions of 
the Wigner-Ville distribution. The spectrogram is it­
self recovered when the "smoothing" function is the 
Wigner-Ville distribution of the analysis window! 

A similar situation appears for time-scale energy 
distributions. For example, the scalogram can be 

,.=025 

... ,.\ lit i. 
It ' 

, .. , . 
.•. ,--,.: ... '."'! / '. .. ... 
'-.~ "-· " - .. _-~ 

written as [FLA90), [RI090a) 

I CWf{ 1:, a) 12 = J J Wx(t,v) Wh(t-1:.av) dt dv 
a 

i.e., as some 2D "affine" correlation between the signal 
and the "basic" wavelet's Wigner-Ville distribution. 
This remarkable formula tells us that there exist 
strong links between Wavelet Transforms and Wig­
ner-Ville distributions. And, as a matter of fact, it can 
be generalized to define the most general class of 
time-scale energy distributions [BER88, FLA90, 
RI090a), just as in the time-frequency case. 

Figure 6 shows that it is even possible to go con­
tinuously from the spectrogram of a given signal to its 
scalogram [FLA90, RI090a). More precisely, starting 
from the Wigner-Ville distribution, by progressively 
controlling Gaussian smoothing functions, one goes 
through a set of energy representations which either 
tends to the spectrogram if regular two-dimensional 
smoothing is used, or to the scalogram if "aff"me" 
smoothing is used. This property may allow us to 
decide whether or not we should choose time-scale 
analysis tools, rather than time-frequency ones for a 
given problem. 

i-!=06 

• . . 

' - -·"" "" ~ - . 

1J=1 

•
•••••• 

( ..• ~ ·~ 

Fig. 6. From spectrograms to scalograms via Wigner-Ville. By controUing the parameter~ (which is a measure of the time-fre­
quency extent of the smoothing junction), it is possible to make aji.lll transition between time-scale and time-frequency 
analyses. Here seven analyses of the same signal (composed of three Gaussian packets) are shown. Note that the best 
joint time-frequency resolution is attained for the Wigner-Ville distribution, while both spectrogram and scalogram (which 
can be thought of as smoothed versions of Wigner-Ville) provide reduced cross-term effects compared to Wigner-Ville (after 
{FI.A90, RI090a]). 
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where Ex is the energy of the signal x( t). 
These frame bounds can be computed from ao. Tand 

h{t) using Daubechies' formulae [DAU90a). Interestingly 
enough, they govem the accuracy of signal reconstruc­
tion by (ll). More precisely, we have 

.xf_t) "' A~ B L L Cj,k hj,k(t) 
j k 

with relative SNRgreaterthan (B/ A+l)/(B/A-1) (see Fig. 
8). The closer A and B, the more accurate the 
reconstruction. It may even happen that A=B ("tight 
frame"). in which case the wavelets behave exactly like 
an orthonormal basis, although they may not even be 
linearly independent [DAU90a)! The reconstruction for­
mula can also be made exact in the general case if one 
uses different synthesis functions llJk{t) (which con­
stitute the dual frame of the hjk(t)s [DAU90a)). 

Introduction to orthogonal wavelet bases 

If a tight frame is such that all wavelets hj,k(t) (9) are 
necessary to reconstruct a general signal, then the 
wavelets form an orthonormal basis of the space of 
signals with finite energy [HEI90). Recall that orthonor­
mality means 

I h':J·.k(t) hlf*.k' (t) dt = {ol ifj = j' and k = k' 
otherwise 

An arbitrary signal can then be represented exactly 
as a weighted sum of basis functions, 

.xf_t) =I. 9 .k hj.k (t) 
j.k 

That is, not only the basis functions hj,k(t) are ob­
tained from a single prototype function h{t) by means of 

SNR(db) 
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Fig. 7. Dyadic sampling grid in the time-scale plane. Each 
node corresponds to a wavelet basis function hj,k(t) with scale 
2·i and shift zi k. 

scalings and shifts, but also they form an orthonormal 
basis. What is most interesting is that there do exist 
well-behaved functions h{t) that can be used as 
prototype wavelets, as we shall see below. This is in 
sharp contrast with the STFT, where, according to the 
Balian-Low theorem [DAU90a). it is impossible to have 
orthonormal bases with functions well localized in time 
and frequency (that is, for which the time-bandwidth 
product M t:.Jis a finite number). 

Recently, the wavelet orthonormal scheme has been 
extended to synthesis functions hjk(t) * hjk(t), leading to 
so-called biorthogonal wavelet bases [COH90a], 
[VET90a). [VET90b). 

THE DISCRETE TIME CASE 

In this section, we first take a purely discrete-time 
point of view. Then, through the construction of iterated 
filter banks, we shall come back to the continuous-time 

bO 
2.0 2,5 3,0 

Fig. 8. Reconstruction Signal/Noise Ratio (SNR) en-or after frame decomposition for different sampling densities ao = 2 11
N (N = 

number of voices per octave), b = aJ k bo (after [DAU90a]). The basic wavelet is the Morlet wavelet (modulated Gaussian) used 
in [GR089]. The reconstruction is done "as !r wavelets were orthogonal (see text}, and its accuracy grows as N increases and 
bo decreases, i.e. as the density of the sampling grid of Fig. 7 increases. Therefore, redundancy refines the "orthogonal-like" 
reconstruction. 
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Three Dimensional Di~lays 
of Complex Wavelet Transforms 

As seen in Box 3, the wavelet transform using a 
complex wavelet like the Morlet wavelet (a complex 
sinusoid windowed by a Gaussian) leads to a com­
plex valued function on the plane. 

Phase information is also useful and thus, there 
is interest in a common display of magnitude and 
phase. This is possible by using height as mag­
nitude and color as phase, leading to so-called 
"phasemagrams". 

1\vo examples are shown here: a synthetic chirp 
in the upper figure (similar to the one in Fig. 5.3); 
and a triangle function below. In both cases, the 
discontinuous points are clearly identified at small 
scales (top of the figure). The chirp has two such 
points (beginning and end), while the triangle has 
three. At large scales, these signals look just like a 
single discontinuity, which is what an observer 
would indeed see from very far away. For the chirp, 
the phase cycles with increasing speed, as ex­
pected. 

Signal analyses with a Morlet wavelet. The display 
shows magnitude as height and phase as color 
(phasemagram). The horizontal axis is time. Above) a 
synthetic chirp signal. with frequency increasing with 
time. Below) a triangle .function. 

case and show how to construct orthonormal bases of 
wavelets for continuous-time signals [DAU88]. 

In the discrete time case, two methods were 
developed independently in the late seventies and early 
eighties which lead naturally to discrete wavelet trans­
forms, namely subband coding [CRI76]. [CR076]. 
[EST77] and pyramidal coding or multiresolution signal 
analysis [BUR83]. The methods were proposed for 
coding, and thus, the notion of critical sampling (of 
requiring a minimum number of samples) was of impor­
tance. Pyramid coding actually uses some oversam­
pling. but because it has an easier intuitive explanation, 
we describe it first. 

While the discrete-time case has been thoroughly 
studied in the filter bank literature in terms of frequency 
bands (see e.g. [VAl87]), we insist here on notions which 
are closer to the wavelet point of view, namely those of 
scale and resolution. Scale is related to the size of the 
signal, while resolution is linked to the amount of detail 
present in the signal (see Box 1 and Fig. 9). 

Note that the scale parameter in discrete wavelet 
analysis is to be understood as follows: For large scales, 
dilated wavelets take "global views" of a subsampled 
signal, while for small scales, contracted wavelets 
analyze small "details" in the signal. 

The Multiresolution Pyramid 

Given an original sequence x(n), n E Z , we derive a 
lower resolution signal by lowpass filtering with a half­
band low-pass filter having impulse response g(n). Fol­
lowing Nyquist's rule, we can subsample by two (drop 
every other sample). thus doubling the scale in the 
analysis. This results in a signal y(n) given by 

y(n) = L g(k) x(2n- k) 

k=-= 

The resolution change is obtained by the lowpass 
filter (loss of high frequency detail). The scale change is 
due to the subsampling by two, since a shift by two in 
the original signal x(n) results in a shift by one in y(n). 

Now. based on this lowpass and subsampled version 
of x(n), we try to find an approximation, a(n). to the 
original. This is done by first upsampling y(n) by two 
(that is, inserting a zero between every sample) since we 
need a signal at the original scale for comparison. 

y'(2n) = y(n), y'(2n+1) = 0 

Then, y'(n) is interpolated with a filter with impulse 
response g'(n) to obtain the approximation a(n). 

a(n) = L g'(k) y'(n- k) 

k=-= 

Note that if g(n) and g'(n) were perfect halfband filters 
(having a frequency passband equal to 1 over the nor­
malized frequency range -rt/2, rt/2 and equal to 0 
elsewhere). then the Fourier transform of a(n) would be 
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(a) x(n) 

(b) 

(c) 

resolution: halved 
scale: doubled 

y(n) 

y(n) 

@-
resolution: halved 
scale: doubled 

y(n) 

resolution: unchanged 
scale: halved 

Fig. 9. Resolution and scale changes in discrete time {by fac­
tors of 2). Note that the scale of signals is defined as in 
geographical maps. {a) Haljband low pass filtering reduces the 
resolution by 2 {scale is unchanged). {b) Haljband lowpassjil­
teringfollowed by subsampling by 2 doubles the scale {and 
halves the resolution as in {a)). {c) Upsampling by 2followed 
by haljband lowpassfiltering halves the scale {resolution is 
unchanged). 

equal to the Fourier transform of x(n) over the frequency 
range (-n/2, n/2) while being equal to zero elsewhere. 
That is, a(n) would be a perfect halfband lowpass ap­
proximation to x(n). 

Of course, in general, a(n) is not going to be equal to 
x(n) (in the previous example, x(n) would have to be a 
halfband signal). Therefore, we compute the difference 
between a(n) (our approximation based on y(n)) and x(n), 

d(n) == X\n) - a(n) 

lt is obvious that x(n) can be reconstructed by adding 
d(n) and a(n), and the whole process is shown in Fig. 
10. However, there has to be some redundancy, since a 
signal with sampling rate is is mapped into two signals 
d(n) and y(n) with sampling rates is and is/2, respec­
tively. 

In the case of a perfect halfband lowpass filter, it is 

x(n) 

clear that d(n) contains exactly the frequencies above 
n/2 of x(n), and thus, d(n) can be subsampled by two as 
well without loss of information. This hints at the fact 
that critically sampled schemes must exist. 

The separation of the original signal x(n) into a coarse 
approximation a(n) plus some additional detail con­
tained in d(n) is conceptually important. Because of the 
resolution change involved (lowpass filtering followed by 
subsampling by two produces a signal with half the 
resolution and at twice the scale of the original), the 
above method and related ones are part of what is called 
Multiresolution Signal Analysis [ROS84] in computer 
vision. 

The scheme can be iterated on y(n), creating a hierar­
chy of lower resolution signals at lower scales. Because 
of that hierarchy and the fact that signals become 
shorter and shorter (or images become smaller and 
smaller). such schemes are called signal or image 
pyramids [BUR83]. 

Subband Coding Schemes 

We have seen that the above system creates a redun­
dant set of samples. More precisely, one stage of a 
pyramid decomposition leads to both a half rate low 
resolution signal and a full rate difference signal, result­
ing in an increase in the number of samples by 50%. 
This oversampling can be avoided if the filters g(n) and 
g'(n) meet certain conditions [VET90b]. 

We now look at a different scheme instead, where no 
such redundancy appears. lt is the so-called subband 
coding scheme first popularized in speech compression 
[CRI76, CR076, EST77]. The lowpass, subsampled ap­
proximation is obtained exactly as explained above, but, 
instead of a difference signal, we compute the "'added 
detail" as a high pass filtered version of x(n) (using a filter 
with impulse response h(n)). followed by subsampling 
by two. Intuitively, it is clear that the "'added detail" to 
the lowpass approximation has to be a highpass signal, 
and it is obvious that if g(n) is an ideal halfband lowpass 
filter. then an ideal halfband high pass filter h(n) will lead 
to a perfect representation of the original signal into two 
subsampled versions. 

This is exactly one step of a wavelet decomposition 
using sin(xl/ xfilters, since the original signal is mapped 
into a lowpass approximation (at twice the S<'" 1e) and 

Fig. 10. Pyramid scheme. Derivation of a lowpass. subsampled approximation y{n). from which an approximation a{n) to x{n) is 
derived by upsampling and interpolation. Then. the difference between the appro.ximation a{n) and the original x(n} is computed 
as d{n). Perfect reconstruction is simply obtained by adding a(n) back. 
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a) 

x (n) 

b) 

Fig. 11. Subband Coding scheme. (a) Two subsampled approximations. one corresponding to low and the other to high frequen­
cies, are computed. The reconstructed signal is obtained by re-interpolating the approximations and summing them The filters 
on the leftform an analysis filter bank, while on the right is a synthesis filter bank. (b) Block diagram (Filter Bank tree) of the 
Discrete Wavelet Transform implemented with discrete-time filters and subsampling by two. The frequency resolution is given in 
Fig. 3b. 

an added detail signal (also at twice the scale). In 
particular, using these ideal filters, the discrete version 
is identical to the continuous wavelet transform. 

What is more interesting is that it is not necessary 
to use ideal (that is, impractical) filters, and yet x(n) can 
be recovered from its two filtered and subsampled 
versions which we now call yo(n) and yl(n). To do so, 
both are upsampled and filtered by g'(n) and h'(n) 
respectively, and finally added together, as shown in 
Fig. 11a. Now, unlike the pyramid case, the 
reconstructed signal (which we now call ~n)) is not 
identical to x(n). unless the filters meet some specific 
constraints. Filters that meet these constraints are said 
to have perfect reconstruction property, and there are a 
number of papers investigating the design of perfect 
reconstruction filter banks [MIN85, SMI86, VAI88, 
VET86]. 

The easiest case to analyze appears when the 
analysis and synthesis filters in Fig. 11a are identical 
(within time-reversal) and when perfect reconstruction 
is achieved (that is, ~n) = x(n), within a possible shift). 
Then it can be shown that the subband analysis/syn­
thesis corresponds to a decomposition onto an or­
thonormal basis, followed by a reconstruction which 
amounts to summing up the orthogonal projections. We 
will assume FIR filters in the following. Then, it tums 
out that the highpass and lowpass filters are related by 

h(L- 1- n) =(-It g(n) (12) 

where Lis the filter length (which has to be even). Note 
that the modulation by (-l)n transforms indeed the 
lowpass filter into a highpass one. 

Now, the filter bank in Fig. 11a, which computes 

convolutions followed by subsampling by two, evaluates 
inner products of the sequence x(n) and the sequences 
lg(-n+2k), h(-n+20l (the time reversal comes from the 
convolution, which reverses one of the sequences). Thus 

yo(k) =I, x(n) g(-n + 2k) 

y1(k) =I, x(n) h(-n + 2k) 
n 

Because the filter impulse responses form an or­
thonormal set, it is ve:ry simple to reconstruct x(n) as 

x(n) =I, [ yo(k) g(-n + 2k) + Yl(k) h(-n + 2k)J (13) 
~~ 

that is, as a weighted sum of the orthogonal impulse 
responses, where the weights are the inner products of 
the signal with the impulse responses. This is of course 
the standard expansion of a signal into an orthonormal 
basis, where the resynthesis is the sum of the or­
thogonal projections (see Introduction to orthogonal 
wavelet bases above). 

From (12). (13) it is also clear that the synthesis filters 
are identical to the analysis filters within time reversal. 

Such orthogonal perfect reconstruction filter banks 
have been studied in the digital signal processing litera­
ture, and the orthonormal decomposition we just indi­
cated is usually referred to as a "paraunita:ry" or 
"lossless" filter bank [VAI89]. An interesting property of 
such filter banks is that they can be written in lattice 
form [V AI88]. and that the structure and properties can 
be extended to more than two channels [VAI87, VAI89, 
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VET89). More general perfect reconstruction (bior­
thogonal) filter banks have also been studied (see e.g. 
[VET86, VET90b, COH90a)). It has been also noticed 
[MAL89b, SHE90, RI090b) that filter banks arise 
naturally when implementing the CWT. 

Note that we have assumed linear processing 
throughout. If non-linear processing is involved (like 
quantization), the oversampled nature of the pyramid 
scheme described in the preceding section may actually 
lead to greater robustness. 

The Discrete Wavelet Transform 

We have shown how to decompose a sequence x{n) 
into two subsequences at half rate, or half resolution, 
and this by means of "orthogonal" filters (orthogonal 
with respect to even shifts). Obviously, this process can 
be iterated on either or both subsequences. In par­
ticular, to achieve finer frequency resolution at lower 
frequencies (as obtained in the continuous wavelet 
transform), we iterate the scheme on the lower band 
only. If g(n) is a good halfband lowpass filter, h(n) is a 
good halfband highpass filter by (12). Then, one itera­
tion of the scheme on the first lowband creates a new 
lowband that corresponds to the lower quarter of the 
frequency spectrum. Each further iteration halves the 
width of the lowband (increases its frequency resolution 
by two), but due to the subsampling by two, its time 
resolution is halved as well. At each iteration, the 
current high band portion corresponds to the difference 
between the previous lowband portion and the current 
one, that is, a passband. Schematically, this is 
equivalent to Fig. 11 b, and the frequency resolution is 
as in Fig. 3b. 

An important feature of this discrete algorithm is its 
relatively low complexity. Actually, the following some­
what surprising result holds: independent of the depth 
of the tree in Fig. 11 b, the complexity is linear in the 
number of input samples, with a constant factor that 
depends on the length of the filter. The proof is 
straightforward. Assume the computation of the first 
filter bank requires Co operations per input sample (Co 
is typically of the order of L). Then, the second stage 
requires also Co operations per sample of its input, but, 
because of the subsampling by two, this amounts to 
Co/2 operations per sample of the input signal. There­
fore, the total complexity is bounded by 

Co Co 
Ctotal = Co + 2 + 4 + ... < 2Co 

which demonstrates the efficiency of the discrete 
wavelet transform algorithm and shows that it is inde­
pendent of the number of octaves that one computes. 
This bounded complexity had been noticed in the mul­
tirate filtering context [RAM88). Further developments 
can be found in [RI091a). Note that a possible drawback 
is that the delay associated with such an iterated filter 
bank grows exponentially with the number of stages. 

Iterated Filters and Regularity 

There is a major difference between the discrete 
scheme we have just seen and the continuous time 

wavelet transform. In the discrete time case, the role of 
the wavelet is played by the high pass filter h(n) and the 
cascade of subsampled lowpass filters followed by a 
highpass filter (which amounts to a bandpass filter). 
These filters, which correspond roughly to octave band 
filters, unlike in the continuous wavelet transform, are 
not exact scaled versions of each other. In particular, 
since we are in discrete time, scaling is not as easily 
defined, since it involves interpolation as well as time 
expansion. 

Nonetheless, under certain conditions, the discrete 
system converges (after a certain number of iterations) 
to a system where subsequent filters are scaled versions 
of each other. Actually, this convergence is the basis for 
the construction of continuous time compactly sup­
ported wavelet bases [DAU88). 

Now, we would like to find the equivalent filter that 
corresponds to the lower branch in Fig. 11 b, that is the 
iterated lowpass filter. It will be convenient to use 

z-transforms of filters, e.g. G(z) = :2, g(n) z-n in the fol-
n 

lowing. It can be easily checked that subsampling by 
two followed by filtering with G(z) is equivalent to filter­
ing with G(~) followed by the subsampling (~ inserts 
zeros between samples of the impulse response, which 
are removed by the subsequent subsampling). That is, 
the first two steps of lowpass filtering can be replaced 
by a filter with z-transform G(z)·G(~). followed by sub­
sampling by 4. More generally, calling d(z) the 
equivalent filter to i stages of lowpass filtering and 
subsampling by two (that is, a total subsampling by 2 1

), 

we obtain 

i-l 

d(z) = n G(~l) (14) 

1=0 

Call its impulse response gi(n). 
As i infinitely increases, this filter becomes infinitely 

long. Instead, consider a function f(x) which is 
piecewise constant on intervals of length 1 I 2 1 and has 
value 2i/2 gi(n) in the interval [n/2i, (n+1)/2i). That is, 

ji(x) is a staircase function with the value given by the 
samples of gi(n) and intervals which decrease as 2-i. It 
can be verified that the function is supported on the 
interval [0, L-1], where Lis the length of the filter g(n). 

Now, for i going to infinity, f(x) can converge to a 
continuous function gc(x), or a function with finitely 
many discontinuities, even a fractal function, or not 
converge at all (see Box 5). 

A necessary condition for the iterated functions to 
converge to a continuous limit is that the filter G(z) 
should have a sufficient number of zeros at z = -1, or 
half sampling frequency, so as to attenuate repeat 
spectra [DAU88, DAU90b, RI091b). Using this condi­
tion, one can construct filters which are both orthogonal 
and converge to continuous functions with compact 
support. Such filters are called regular, and examples 
can be found in [DAU88, COH90a, DAU90b, RI090b, 
VET90b). Note that the above condition can be inter­
preted as a flatness condition on the spectrum of G(z) 
at half sampling frequency. In fact, it can be shown 
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Box5: 
Regular Scaling Filters 

It is well known that the structure of computations 
in a Discrete Wavc:}et 'I'ransfonn and in an octave­
band filter bank are identical. Therefos;-e, ~ides the 
different .views and interpretat;lons that have been 
given to them. tb.e main diff~nce ·Jtes. in the filter 
design. Wavelet filters are chosen so as to be regular. 
Recall that thls means (with the same notation as 
used in tb.e main t~ sectio~ on iterated filters). that 
the piecewise constant functiQD.associated with the 
discrete wavelet sequence lg(n) of z-transfonn 
G(z)H{.z21) conva:ges (e.g. pointwiSe), ~ j indefinitely 
increases, to a reglllarlimltfunction heW. Equivalent­
ly .. the piecewise .con.tant function associated With 
the discrete "s.ealing" sequen,ce .fll(n) of z-transfonn 
G(z) converges to a Rgular limit function Yc(~. By 
"regular" we mean that the continuous-time wavelet 
he(~ (or the scaling function gd.x)) · is at least con­
tinuous, or better, once or twice continuously dif­
ferentiable. The regUlarity· order is the number of 
times he(~ (or gcW) is continuously differentiable. 
Figtires 12a and 12b show two examples. one where 
ge(~ is almost three tiines continuously differentiable 
and anotherwbere QJ{n) diverges with fractal behaVior. 

Note that there are a nulllbet of classical filters, 
designed for two-band filter batiks, which; unlike 
wavelet filters, are rlDt regular. Figures 12c through 
12f show two W'ell~kno\vn examples: a Johnston filter 
(JOH80], and a Smith and Batrtwen filter (SMI86}. The 
latter allows perfect reconstruction, while the fonner 
does not. Figure 12d shows that the Smith and 
Barnwell discrete sequences l'!t(n) do not tend to 
regular limit functions, but rather diverge. This is not 
surprising since the necessary condition that the 
low-pass filter has a zero at half the sampling frequen­
cy is violated (although tbis filter has 40 dB attenua­
tion In the stop band ISMI86D. nus eventually 
results, whenj increaSes, in sman. but rapid osctna~ 
tions in ly(n). As .,J: tlt.e JohnSton filter (F:Igs. •J2e and 
12f), it can be showil that the l.\tavelet limit function 
is continuous but not dlfferenamte. 

For wavelettnters~ themonn'eJUiarthe limit func­
tion. the fasterthe WDVetget* to thi$limit IRI09lb) 
- and in practice the convergence is very fast. This 
justifies. the study of the limit heW. ~ is almost 
attained after a few octave& of a logarlthm:ic decom­
position. Since•an elTQl' .in.a wa~ ~t (due 
e.g. to quantizatiOn). result.$, al't4r r~trqction, in 
an overall error p~ ;W.£l·~te wavelet 
ly(n). regularity. secnnsc~l:n¥:e ~. e.g., to avoid 
Visible distortion .fiD a :reconstn.K:ted wage IANJOOJ. 

FrQm equatiOJlS (12), {15) ..,S (16}, the knowledge 
of g(n) suffices q, detenntne -~ •. Umtt. he(~. Several 
methods have been develo"" · to estimate the 
regularity order of heW·~ tbe~ents9{n). Most 
are based. pn .F'o.uner ~teehniques IDAU88. 
COHOOb).· Recently; time-domain techniques have 
been developed .wbicb ~ opttwal estimates 
IDAU90c, RI091b). 
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Fig. 13. Scaling functions satisfying two-scale difference equations. (a) the hatfunction. (b) the D4 wavelet obtainedfrom a 4-tap 
regular filter by Daubechies. 

[AKA90]. [SHE90] that the well-known Daubechies or­
thonormal filters [DAU88] are deduced from "maximally 
flat" low-pass filters [HER71]. Note that there are many 
other choices that behave very differently in terms of 
phase, selectivity in frequency, and other criteria (see 
e.g. [DAU90b]). An important issue related to regular 
filter design is the derivation of simple estimates for the 
regularity order (see Box 5). 

It is still not clear whether regular filters are most 
adapted to coding schemes [ANI90]. The minimal 
regularity order necessary for good coding performance 
of discrete wavelet transform schemes, if needed at all, 
is also not known and remains a topic for future inves­
tigation. 

Scaling Functions and Wavelets 
Obtained from Iterated Filters 

Recall that gc(x) is the final function to which J\x) 
converges. Because it is the product of lowpass filters, 
the final function is itselflowpass and is called a" scaling 
junction" because it is used to go from a fine scale to a 
coarser scale. Because of the product (14) from which 
the scaling function is derived, gc(x) satisfies the follow­
ing two scale difference equation [DAU90c]: 

9c(X) = I, g(n) gc(2x-n) (15) 
n=-oo 

Figure 13 shows two such examples. The second one 
is based on the 4-tap Daubechies filter which is regular 
and orthogonal to its even translates [DAU88]. 

So far, we have only discussed the iterated lowpass 
and its associated scaling function. However, from Fig. 
11 b. it is clear that a bandpass filter is obtained in the 
same way, except for a final highpass filter. Therefore, 
in a fashion similar to (15), the wavelet hc(x) is obtained 
as 

hc(x) = I, h(n) gc(2x-n) (16) 
n=-oo 

that is, it also satisfies a two scale equation. 
Now, if the filters h{n) and g(n) form an orthonormal 

set with respect to even shifts, then the functions gc(x-0 
and hc(x-k) form an orthonormal set (see Box 6). Be­
cause they also satisfY two scale difference equations, 
it can be shown [DAU88] that the set hc(2-ix-k). i,k E Z. 
forms an orthonormal basis for the set of square in­
tegrable functions. 

Figure 14 shows two scales and shifts of the 4-tap 
Daubechies wavelet [DAU88]. While it might not be 
obvious from the figure, these functions are orthogonal 
to each other, and together with all scaled and trans­
lated versions, they form an orthonormal basis. 

Figure 15 shows an orthogonal wavelet based on a 
length-18 regular filter. It is obviously a much smoother 
function (actually, it possesses 3 continuous deriva­
tives). 

Finally, Fig. 16 shows a biorthogonal set of linear 
phase wavelets. where the analysis wavelets are or­
thogonal to the synthesis wavelets. These were obtained 
from a biorthogonallinear phase filter bank with length-
18 regular filters [VET90a, VET90b]. 

We have shown how regular filters can be used to 
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Box6: 
Multiresolution analysis 

The concept f){ multiresolution approximation of 
function$ was introduCed by Meyer and Mallat 
IMAt..89a, MAL89c, MEY90) and provides a power­
ful framework to understand wavelet decomposi­
tions. The basic idea is that of successive 
approximation. together With that of ·added detail" 
as one glies ~ one approximation to the next, 
finer one; We here give the intuition behind the 
constru.ctJQn. ···· 

Assume we have a ladder of spaces such that: 

... c: ¥2 c: ¥1 c: Vo c: V-1 c: V-2 c ... 

with the property that if j(x) e Vt then 

J(x-2-ik)e Vt. ke Z, andj(2x)e Vt-1. Call Wt the 
orthogonal complement of Vt in Vt-1· This is written 

(B6.1) 

Thus, Wt contains the "detail" necessary to go 
from Vt to Yt-1· Iterating {86.1), one has 

(B6.2) 

that is, a given resolution can be attained by a 
sum of added details. 

Now, assume we have an orthonormal basis for 
Vo made up of a function gc(~ and its integer 
translates. Because Vo e V-1. gc(~ can be written 
in terms of the basis in V-1. i.e .• (15) is satisfied: 

gd_x) = I en gd_2~n) 
n 

Then it can be verified that the function hc(~ ( 16) 
(With the relation (12}} and its integer translates 
form an orthonormal basis for Wo. And, because of 
{86.2), ~ and its scaled and translated versions 
form a wavelet basis IMAL89a, MAL89c, MEY90). 

. The multtresolution idea is now very intuitive. 
Asswne we have an. approximation of a signal at a 
resolution COU'eSponding to Vo. Then a better ap­
proximation is obtained by adding the details cor­
responding to ·wo. that is. the projection of the 
signal in Wo .. This amounts to a weighted sum of 
wavej• afthat Pte. Thus, by iterating this idea, 
a square tntegrable signal can be seen as the suc­
cessi\re app_rox~tnatkm or weigllted sum of wavelets 
at finer and finer scale. 

generate wavelet bases. The converse is also true. That 
is, orthonormal sets of scaling functions and wavelets 
can be used to generate perfect reconstruction filter 
banks [DAU88, MAL89a, MAL89c]. 

Extension of the wavelet concept to multiple dimen­
sions, which is useful, e.g. for image coding, is shown 
in Box 7. 

0.2 .--~-~-~-~-~--~-~-. 

0 15 

0 1 

0.05 

-0 05 

0 15 

01 

0.05 

-0 05 

~ 
I 

il 
f t 

i i i 1 

1 I l 
\ I \ 

~~ 
I! 
I! 

{ \ 
I , . I 
I I 

i i 
: \ ... 

-0.1 L--~-~-~--:--~---:~-:--~ 
-1 

Fig. 14. Two scales of the D4 wavelet and shifts. This set of 
functions is orthogonal. 

APPLICATIONS OF WAVELETS IN 
SIGNAL PROCESSING 

From the derivation of the wavelet transform as an 
altemative to the STFT, it is clear that one of the main 
applications will be in non-stationary signal analysis. 
While conceptually, the cwr is a classical constant-Q 
analysis, its simple definition (based on a single func­
tion rather than multiple filters) allows powerful 
analytical derivations and has already lead both to new 
insights and new theoretical results [WAV89] . 

Applications of wavelet decompositions in numerical 
analysis, e.g. for solving partial differential equations, 
seem very promising because of the "zooming" property 
which allows a very good representation of discon­
tinuities, unlike the Fourier transform [BEY89]. 

Perhaps the biggest potential of wavelets has been 
claimed for signal compression. Since discrete wavelet 
transforms are essentially subband coding systems, 
and since subband coders have been successful in 
speech and image compression, it is clear that wavelets 
will find immediate application in compression 
problems. The only difference with traditional subband 
coders is the fact that filters are designed to be regular 
(that is, they have many zeroes at z = 0 or z = 7t). Note 
that although classical subband filters are not regular 
(see Box 5 and Fig. 12). they have been designed to have 
good stopbands and thus are close to being "regular", 
at least for the first few octaves of sub band decomposi­
tion. 
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Fig. 15. Orthonormal wavelet generated from a length-18 regular filter [DAUBS]. The time function is shown on the left and the 
spectrum is on the right. 

It is therefore clear that drastic improvements of 
compression will not be achieved so easily simply be­
cause wavelets are used. However, wavelets bring new 
ideas and insights. In this respect, the use of wavelet 
decompositions in connection with other techniques 
(like vector quantization [ANI90] or multiscale edges 
[MAL89d]) are promising compression techniques 
which make use of the elegant theory of wavelets. 

New developments, based on wavelet concepts. have 
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already appeared. For example, statistical signal 
processing using wavelets is a promising field. Multi­
scale models of stochastic processes [BAS89], [CH091]. 
and analysis and synthesis of 1/J noise [GAC91], 
[WOR90] are examples where wavelet analysis has been 
successful. "Wavelet packets" [WIC89], which cor­
respond to arbitrary adaptive tree-structured filter 
banks, are another promising example. 
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Fig. 16. Biorthogonal wavelets generated from 18-tap regular filters [VET90b]. (a) Analysis wavelet. (b) Synthesis wavelet. The 
time function is shown on the left and the spectrum is on the right. 
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Box 7: Multidimensional filter banks and wavelets 
In order to apply wavelet decompositions to multi­

dimensional signals (e.g., images), multidimensional 
extensions of wavelets are required. An obvious way 
to do this is to use "separable wavelets" obtained from 
products of one-dimensional wavelets and scaling 
functions (MAL89a, MAL89c, MEY90). Let us consider 
the two-dimensional case for its simplicity. Take a 
scaling function gc(x) (15) and a wavelet hc(x) (16). One 
can construct for two-dimensional functions : 

gc(x.y) = gc(x) . gc(y) 

hi,l) (X.!J);: 9c(x)•hc(y) 

rfll (x,y) = hc(x)·gc(y) 

hi,3J (x,y) = hc(x)·hc(y) 

which are orthogonal to each other with respect to 
integer shifts (this follows from the orthogonality of 
the one dimensional component). The function gc(x,y) 
is a separable two-dimensional scaling function (that 
is, a lowpass filter} while the functions hi,Q(x,y) are 

"wavelets". The set {hi,Q(.zix-k, ~x-0. i= 1.2,3 andj,k,l 
e Z) forms an orthonormal basis for square integrable 
functions over R2 · This solution corresponds to a 
separable two-dimensional filter bank with subsam-

pling by 2 in each dimension, that is, overall subsam­
pling by 4 (see Fig. 17). 

More interesting (that is, non-trivial) multidimen­
sional wavelet schemes are obtained when non­
separable subsampling is used (KOV92). For 
example, a non-separable subsampling by 2 of a 
double indexed signal x(m. n2) is obtained by retain­
ing only samples satisfYing: 

(B7.1) 

The resulting points are located on a so-called 
quincunx sublattice of z2· Now, one can construct a 
perfect reconstruction filter bank involving such sub­
sampling because it resembles its one-dimensional 
counterpart (KOV92). The subsampling rate is 2 
(equal to the determinant ofthe matrix in (B7.1)). and 
the filter bank has 2 channels. Iteration of the filter 
bank on the lowpass branch (see Fig. 18) leads to a 
discrete wavelet transform, and if the filter is regular 
(which now depends on the matrix representing the 
lattice (KOV92)), one can construct non-separable 
wavelet bases for square integrable functions over R2 

with a resolution change by 2 (and not 4 as in the 
separable case). An example scaling function is pic­
tured in Fig. 19. 

vertically 

Fig. 17. Separable two-dimensional filter bank corresponding to a separable wavelet basis with resolution change by 4 (2 
in each dimension). The parti.tion of the frequency plane is indl.cated on the right. H1 and Hh stand for low-pass and high­
pass filter. respectively. 

34 

X(z) 

N:det(D) 

Fig. 18. Iteration of a non-separable filter bank based on 
non-separable subsampling. This construction leads to non­
separable wavelets. 

Fig. 19. Two-dimensional non-separable orthononnal scal­
ingjimction [KOV92} (orthogonality is with respect to integer 
shifts). The resolution change is by 2 H2 in each dimen­
sion). The matrix used for the subsampling is the one given 
in (B7.1). 

IEEE SP MAGAZINE OGOBER 1991 

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on December 08,2021 at 17:11:53 UTC from IEEE Xplore.  Restrictions apply. 



CONCLUSION 

We have seen that the Short-Time Fourier Transform 
and the Wavelet Transform represent alternative ways 
to divide the time-frequency (or time-scale) plane. Two 
major advantages of the Wavelet Transform are that it 
can zoom in to time discontinuities and that orthonor­
mal bases, localized in time and frequency, can be 
constructed. In the discrete case, the Wavelet Trans­
form is equivalent to a logarithmic filter bank, with the 
added constraint of regularity on the lowpass filter. 

The theory of wavelets can be seen as a common 
framework for techniques that had been developed 
independently in various fields. This conceptual 
unification furthers the understanding of the 
mechanisms involved, quantifies trade-offs. and points 
to new potential applications. A number of questions 
remain open, however, and will require further inves­
tigations (e.g., what is the "optimal" wavelet for a par­
ticular application?). 

While some see wavelets as a very promising brand 
new theory [CIP90]. others express some doubt that it 
represents a major breakthrough. One reason for skep­
ticism is that the concepts have been around for some 
time, under different names. For example, wavelet 
transforms can be seen as constant-Q analysis 
[YOU78]. wide-band cross-ambiguity functions [SPE67, 
AUS90]. Frazier-Jawerth transforms [FRA86]. perfect 
reconstruction octave-band filter banks [MIN85, 
SMI86]. or a variation of Laplacian pyramid decomposi­
tion [BUR83]. [BUR89]! 

We think that the interest and merit of wavelet theory 
is to unifY all this into a common framework, thereby 
allowing new ideas and developments. 
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