
CHAPTERl  
BASIC DESCRIPTIONS  

AND PROPERTIES  

This first chapter gives basic descriptions and properties of deterministic data 
and random data to provide a physical understanding for later material in this 
book. Simple classification ideas are used to explain differences between 
stationary random data, ergodic random data and nonstationary random data. 
Fundamental statistical functions are defined by words alone for analyzing the 
amplitude, time and frequency domain properties of single stationary random 
records and pairs of stationary random records. An introduction is presented 
on various types of input/output problems solved in this book, as well as 
necessary error analysis criteria to design experiments and evaluate measure-
ments. 

t.t DETERMINISTIC VERSUS RANDOM DATA 

Any observed data representing a physical phenomenon can be broadly 
classified as being either deterministic or nondetenmnistic. Deterministic data 
are those that can be described by an explicit mathematical relationship. For 
example, consider a rigid body that is suspended from a fixed foundation by a 
linear spring, as shown in Figure 1.1. Let m be the mass of the body (assumed 
to be inelastic) and k be the spring constant of the spring (assumed to be 
massless). Suppose the body is displaced from its position of equilibrium by a 
distance X, and released at time I  O. From either basic laws of mechanics or 
repeated observations, it can be established that the following relationship will 
apply: 

I ;" 0 (1.1) 

t 
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Position 01 
Iequilibrlum 

Figure 1.1 Simple spring mass system. :t(t) 

Equation (1.1) defines the exact location of the body at any instant of time in 
the future. Hence the physical data representing the motion of the mass are 
deterministic. 

There are many physical phenomena in practice that produce data that can 
be represented with reasonable accuracy by explicit mathematical relation-
ships. For example, the motion of a satellite in orbit about the earth, the 
potential across a condenser as it discharges through a resistor, the vibration 
response of an unbalanced rotating machine, and the temperature of water as 
heat is applied are all basically deterministic. However, there are many other 
physical phenomena that produce data that are not deterministic. For example, 
the height of waves in a confused sea, the acoustic pressures generated by air 
rushing through a pipe, and the electrical output of a noise generator represent 
data that cannot be described by explicit mathematical relationships. There is 
no way to predict an exact value at a future instant of time. These data are 
random in character and must be described in terms of probability statements 
and statistical averages ralher than by explicit equations. 

The classification of various physical data as being either deterministic or 
random might be debated in many cases. For example, it might be argued that 
no physical data in practice can be truly deterministic since there is always a 
possibility that some unforeseen event in the future might infiuence the 
phenomenon producing the data in a manner that was not originally consid-
ered. On the other hand, it might be argued that no physical data are truly 
random, since exact mathematical descriptions might be possible if a sufficient 
knowledge of the basic mechanisms of the phenomenon producing the data 
were available. In practical terms, the decision of whether physical data are 
deterministic or random is usually based on the ability to reproduce the data 
by controlled experiments. If an experiment producing specific data of interest 
can be repeated many times with identical results (within the limits of 
experimental error), then the data can generally be considered deterministic. If 
an experiment cannot be designed that will produce identical results when the 
experiment is repeated, then the data must usually be considered random in 
nature. 

Various special classifications of deterministic and random data will now be 
discussed. Note that the classifications are selected from an analysis viewpoint 
and do not necessarily represent the most sui table classifications from other 
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possible viewpoints. Further note that physical data are usually thought of as 
being functions of time and will be discussed in such terms for convenience. 
Any other variable, however, can replace time, as required. 

1.2 CLASSIFICATIONS OF DETERMINISTIC DATA  

Data representing deterministic phenomena can be categorized as being either 
periodic or nonperiodic. Periodic data can be further categorized as being 
either sinusoidal or complex periodic. Nonperiodic data can be further cate-
gorized as being either" almost-periodic" or transient. These various classifica-
tions of deterministic data are schematically illustrated in Figure 1.2. Of 
course, any combination of these forms may also occur. For purposes of 
review, each of these types of deterministic data, along with physical examples, 
will be briefly discussed. 

1.2.1 Sinusoidal Periodic Data 

Sinusoidal data are those types of periodic data that can be defined mathemati-
cally by a time-varying function of the form 

x{t) = Xsin{2'7T/ot + 0) (1.2) 
where 

x = ampli tude 
Jo=cyclical frequency in cycles per unit time 
o=initial phase angle with respect to the time origin in radians 

x(t)=instantaneous value at time t 

The sinusoidal time history described by Equation (1.2) is usually referred to as 
a sine wave. When analyzing sinusoidal data in practice, the phase angle 0 is 
often ignored. For this case, 

x{t) = Xsin2'7T/ot (1.3) 

Figure 1.2 Classifications of deterministic data. 
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%(t) Amplitude

 Time J-r-- ·  
Figure 1.3 Time history and spectrum of sinusoidal data. 

Equation (1.3) can be pictured by a time history plot or by an amplitude-
frequency plot (frequency spectrum), as illustrated in Figure 1.3. 

The time interval required for one full fluctuation or cycle of sinusoidal data 
is called the period Tp • The number of cycles per unit time is caned the 
frequency fo. The frequency and period are related by 

1 
T=- (1.4) 

p fo 

Note that the frequency spectrum in Figure 1.3 is composed of an amplitude 
component at a specific frequency, as opposed to a continuous plot of 
amplitude versus frequency. Such spectra are called discrete spectra or line 
spectra. 

There are many examples of physical phenomena that produce approx-
imately sinusoidal data in practice. The voltage output of an electrical alternator 
is one example; the vibratory motion of an unbalanced rotating weight is 
another. Sinusoidal data represent one of the simplest forms of time-varying 
data from the analysis viewpoint. 

1.2.2 Complex Periodic Data 

Complex periodic data are those types of periodic data that can be defined 
mathematically by a time-varying function whose waveform exactly repeats 
itself at regular intervals such that 

x(t) = x(t ±  n = 1,2,3, ... (1.5) 

As for sinusoidal data, the time interval required for one full fluctuation is 
called the period Tp • The number of cycles per unit time is called the 
fundamental frequency fl. A special case for complex periodic data is clearly 
sinusoidal data, where fl = fo· 

With few exceptions in 
into a Fourier series accon 

where 

b = - f 
n T 0 

2 iT 
p 

An alternative way to expl 

x( t) = 

where 

Xo = a, 

In words, Equation (1.7) s 
component Xo and an i 
harmonics, which have am 
harmonic components are  

When analyzing periodi 
ignored. For this case, B 
spectrum, as illustrated in 
include only a few compO! 
may be absent. For examI 
mixing three sine waves, W 

highest common divisor is  
 = 0.2 sec. Hence when e 

zero except for n = 12, n = 
Physical phenomena tho 

common than those that pn 



5 CLASSIFICATIONS OF DETERMINISTIC DATA 

With few exceptions in practice, complex periodic data may be expanded 
into a Fourier series according to the following formula: 

a 000 
x(t)  2 + E:I (a"cos 27Tn/1t + b"sin27Tn/lt) (1.6) 

where 

a"  -
2 fT'x(t)cos27Tn/1tdt n = 0,1,2, ... r. 0 

L 

2 fTb"   - 'x(t)sin27Tn/ltdt n=1,2,3, ... 
Tp 0 

An alternative way to express the Fourier series for complex periodic data is 

00 

x(t)  Xo + L X"cos(27Tn/1t - 8") (1.7) 
1'1'=1 

wheref 

x   la'1'1' + b' n=1,2,3, ...II 1'1' r 
s  n=1,2,3, ... 

In words, Equation (1.7) says that complex periodic data consist of a static 
component Xo and an infinite number of sinusoidal components called 
harmonics, which have amplitudes X" and phases 8". The frequencies of the 
harmonic components are all integral multiples of 11' 

l When analyzing periodic data in practice, the phase angles 8" are often 
ignored. For this case, Equation (1.7) can be characterized by a discrete 
spectrum, as illustrated in Figure 104. Sometimes, complex periodic data will 
include only a few components. In other cases, the fundamental component 
may be absent. For example, suppose a periodic time history is formed by 
mixing three sine waves, which have frequencies of 60, 75, and IOO Hz. The 
highest common divisor is 5 Hz, so the period of the resulting periodic data is 
Tp = 0.2 sec. Hence when expanded into a Fourier series, all values of XII are 
zero except for n  12, n  15, and n  20. 

{ Physical phenomena that produce complex periodic data are far more 
common than those that produce simple sinusoidal data. In fact, the classifica-
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Figure 1.4 Spectrum of complex periodic data. 

hon of data as being sinusoidal is often only an approximation for data that 
are actually complex. For example, the voltage output from an electrical 
alternator may actually display, under careful inspection, some small contribu-
tions at higher harmonic frequencies. In other cases, intense harmonic compo-
nents may be present in periodic physical data. For example, the vibration 
response of a multicylinder reciprocating engine will usually display consider-
able harmonic content. 

1.2.3 A (most- Periodic Data 

In Section 1.2.2, it is noted that periodic data can generally be reduced to a 
series €If sine waves with commensurately related frequencies. Conversely, the 
data formed by summing two or more commensurately related sine waves will 
be periodic. However, the data formed by summing two or more sine waves 
with arbitrary frequencies generally will not be periodic. Specifically, the sum 
of two or more sine waves will be periodic only when the ratios of all possible 
pairs of frequencies form rational numbers. This indicates that a fundamental 
period exists, which will satisfy the requirements of Equation (1.5). Hence 

x(t)  X,sin(2t + 0,) + X,sin(3t + 0,) + X,sin(7t + 03) 

is periodic since f,  and  are rational numbers (the fundamental period is 
  1). On the other hand. 

x(t)  X,sin(21 + 0,) + X,sin(3t + 0,) + X,sin(15O t + 0,) 

is not periodic since 2/ ISo and 3/150 are not rational numbers (the 
fundamental period is infinitely long). The resulting time history in this case 
will have an almost-periodic character, but the requirements of Equation (1.5) 
will not be satisfied for any finite value of Tp . 

Based on these discussions. almost-periodic data are those types of nonperi-
odic data that can be defined mathematically by a time-varying function of the 

Amplitude 

o f! [ 
Figure 1.5 

form 

x(t 

where /,,/fm'* rational nun 
almost-periodic data freque 
more unrelated periodic ph, 
tion response in a multiple t 

of synchronization. 
An important property 0 

angles 0" are ignored, Eql 
frequency spectrum similar 
difference is that the frequen 
numbers. as illustrated in Fi! 

1.2.4 Transient Nonperiod. 

Transient data are defined a 
odic data discussed in Secti( 
data not previously discussc 
varying function. Three simI 
1.6. 

Physical phenomena that 
For example, the data in F 
water in a kettle (relative to 
The data in Figure 1.6(b) 
mechanical system after an 
1.6( c) could represent the st 

An important characteris 
almost-periodic data, is that 
A continuous spectral repre 



CLASSIFICATIONS OF DETERMINISTIC DATA 7 

Amplitude 

X2 

X, r'l--!-------!L-----l---- L_._ Frequency 
o h f, fJ r. 

Figure 1.5 Spectrum of almost-periodic data. 

form 

oc 

X(I)  L X"sin(21Tf"' + 8") (1.8) 
n=l 

where flllf", =1= rational number in all cases. Physical phenomena producing 
almost-periodic data frequently occur in practice when the effects of two or 
more unrelated periodic phenomena are mixed. A good example is the vibra-
tion response in a multiple engine propeller airplane when the engines are out 
of synchronization. 

An important property of almost-periodic data is as follows. If the phase 
angles 8" are ignored, Equation (1.8) can be characterized by a discrete 
frequency spectrum similar to that for complex periodic data. The only 
difference is that the frequencies of the components are not related by rational 
numbers. as illustrated in Figure 1.5. 

1.2.4 Transient Nonperiodic Data 

Transient data are defined as all nonperiodic data other than the almost-peri-
odic data discussed in Section 1.2.3. In other words, transient data include all 
data not previously discussed that can be described by some suitable time-
varying function. Three simple examples of transient data are given in Figure 
1.6. 

Physical phenomena that produce transient data are numerous and diverse. 
For example, the data in Figure 1.6(a) could represent the temperature of 
water in a kettle (relative to room temperature) after the flame is turned off. 
The data in Figure 1.6(b) might represent the free vibration of a damped 
mechanical system after an excitation force is removed. The data in Figure 
1.6( c) could represent the stress in an end-loaded cable that breaks at time c. 

An important characteristic of transient data, as opposed to periodic and 
almost-periodic data, is that a discrete spectral representation is not possible. 
A continuous spectral representation for transient data can be obtained in 
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Figure 1.6 Illustrations of transient data. 

most cases, however, from a Fourier transform given by 

X(j)  t' x(t)e-/ 2.!, dl (1.9) 
-00 

The Fourier transform X(f) is generally a complex number that can be 
expressed in complex polar notation as 

X(j)  IX(j)le-;'(f) 

Ixml 
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Figure 1.7 Spectra of lransient data. 
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Here, IX(f)1 is the magnitude of X(f) and O(f) is the argument. In terms of 
the magnitude IX(f)I. continuous spectra of the three transient time histories 
in Figure 1.6 are as presented in Figure 1.7. Modern procedures for the digital 
computation of Fourier series and finite Fourier transforms are detailed in 
Chapter 11. 

1.3 CLASSIFICATIONS OF RANDOM DATA 

As discussed earlier. data representing a random physical phenomenon cannot 
be described by an explicit mathematical relationsltip, because each observa-
tion of the phenomenon will be unique. In other words. any given observation 
will represent only one of many possible results that might have occurred. For 
example, assume the output voltage from a thermal noise generator is recorded 
as a function of time. A specific voltage time ltistory record will be obtained, as 
shown in Figure 1.8. If a second thermal noise generator of identical construc-
tion and assembly is operated simultaneously, however, a different voltage time 
ltistory record would result. In fact, every thermal noise generator that might 
be constructed would produce a different voltage time history record, as 
illustrated in Figure 1.8. Hence the voltage time history for anyone generator 
is merely one example of an infinitely large number of time ltistories that might 
have occurred. 

Voltage 

  
Voltage 

 .....  

Figure 1.8 Sample records of thermal noise generator outputs. 
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Figure 1.9 Classifications of random data. 

A single time history representing a random phenomenon is called a sample 
function (or a sample record when observed over a finite time interval). The 
collection of all possible sample functions that the random phenomenon might 
have produced is called a random process or a stochastic process. Hence a 
sample record of data for a random physical phenomenon may be thought of 
as one physical realization of a random process. 

Random processes may be categorized as being either stationary or nonsta-
tionary. Stationary random processes may be further categorized as being 
either ergodic or nonergodic. Nonstationary random processes may be further 
categorized in terms of specific types of nonstationary properties. These 
various classifications of random processes are schematically illustrated in 
Figure 1.9. The meaning and physical significance of these various types of 
random processes will now be discussed in broad terms. More analytical 
definitions and developments are presented in Chapters 5 and 12. 

1.3.1 Stationary Random Data 

When a physical phenomenon is considered in terms of a random process, the 
properties of the phenomenon can hypothetically be described at any instant 
of time by computing average values over the collection of sample functions 
that describe the random process. For example, consider the collection of 
sample functions (also called the ensemble) that forms the random process 
illustrated in Figure 1.10. The mean value (first moment) of the random 
process at some time t l can be computed by taking the instantaneous value of 
each sample function of the ensemble at time t l , summing the values, and 
dividing by the number of sample functions. In a similar manner, a correlation 
(joint moment) between the values of the random process at two different 
times (called the autocorrelation function) can be computed by taking the 
ensemble average of the product of instantaneous values at two times, t I and 
t l + T. That is, for the random process {x(t)}, where the symbol { } is used to 
denote an ensemble of sample functions, the mean value fl x(tl) and the 
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autocorrelation function Rx:x(tt, '1 + T) are given by 
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 where the final summation assumes each sample function is equally likely. 
>f For the general case where !Lx(t,) and Ru(t" I, + T) defined in Equation 
.d (LI0) vary as time I, varies. the random process {X(I)} is said to be 
on nonslalionary. For the special case where ILx(tl) and  ,} + T) do not 
:>t vary as time I, varies, the random process {X(I)} is said to be weakly .e stationary or stationary in the wide sense. For weakly stationary random 
,d processes, the mean value is a constant and the autocorrelation function is 
to dependent only on the time displacement T. That is, !Lx(t,)  and 

 Rn(I,. I, + T)  Rxx(T). 
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An infinite collection of higher-order moments and joint moments of the 
random process {x(t)} could also be computed to establish a complete family 
of probability distribution functions describing the process. For the special 
case where all possible moments and joint moments are time invariant, the 
random process {x(t)} is said to be strongly stationary or stationary in the 
strict sense. For many practical applications, verification of weak stationarity 
will justify an assumption of strong stationarity. 

1.3.2 Ergodic Random Data 

In Section 1.3.1. it is noted how the properties of a random process can be 
determined by computing ensemble averages at specific instants of time. In 
most cases, however. it is also possible to describe the properties of a stationary 
random process by computing time averages over specific sample functions in 
the ensemble. For example. consider the kth sample function of the random 
process illustrated in Figure 1.10. The mean value I' x( k) and the autocorrela-
tion function R x x< r. k ) of the k th sample function are given by 

liTxk(t)dt (1.1Ia) 
T-ooo T 0 

(1.11b) 

If the random process {x(t)} is stationary, and 1'.(k) and R ,,( r. k) defined 
in Equation (1.11) do not differ when computed over different sample func-
tions, the random process is said to be ergodic. For ergodic random processes, 
the time-averaged mean value and autocorrelation function (as well as all other 
time-averaged properties) are equal to the corresponding ensemble averaged 
values. That is. I' x( k) = I' x and R xX< r, k)  R ox( r). Note that only sta-
tionary random processes can be ergodic. 

Ergodic random processes are clearly an important class of random processes 
since all properties of ergodic random processes can be determined by per-
forming time averages over a single sample function. Fortunately, in practice, 
random data representing stationary physical phenomena are generally ergodic. 
It is for this reason that the properties of stationary random phenomena can be 
measured properly, in most cases, from a single observed time history record. 
A full development of the properties of ergodic random processes is presented 
in Chapter 5. 

1.3.3 Notlstatiotlary Ratldom Data 

Nonstationary random processes include all random processes that do not 
meet the requirements for stationarity defined in Section 1.3.1. Unless further 
restrictions are imposed, the properties of a nonstationary random process are 
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e generally time-varying functions that can be determined only by performing 
instantaneous averages over the ensemble of sample functions forming theY 
process. In practice, it is often not feasible to obtain a sufficient number of 

,e sample records to permit the accurate measurement of properties by ensemble 
ce averaging. That fact has tended to impede the development of practical 
:y techniques for measuring and analyzing nonstationary random data. 

In many cases, the nonstationary random data produced by actual physical 
phenomena can be classified into special categories of nonstationarity that 
simplify the measurement and analysis problem. For example, some types of 
random data might be described by a nonstationary random process (x(t)}, 

,e where each sample function is given by x(t)  a(t)u(t). Here, u(t) is a sample 
.n function from a stationary random process (U(I)) and a(t) is a deterministic 
ry multiplication factor. In other words, the data might be represented by a 
cn nonstationary random process consisting of sample functions with a common 
rn deterministic time trend. If nonstationary random data fit a specific model of 
a- this type, ensemble averaging is not always needed to describe the data. The 

various desired properties can sometimes be estimated from a single sample 
record, as is true for ergodic stationary data. These matters are developed in 
detail in Chapter 12.a) 
1.3.4 Stationary Sampk Records 

b) The concept of stationarity, as defined and discussed in Section 1.3.1. relates to 
the ensemble averaged properties of a random process. In practice. however, 
data in the form of individual time history records of a random phenomenon 

.c- are frequently referred to as being stationary or nonstationary. A slightly 
 different interpretation of stationarity is involved here. When a single time 

.er history record is referred to as being stationary, it is generally meant that the 
ed properties computed over short time intervals do not vary significantly from 
la- one interval to the next. The word significantly is used here to mean that 

observed variations are greater than would be expected due to normal statisti-
;.es cal sampling variations. 

To help clarify this point, consider a single sample record xk(t) obtained 
;:0, from the kth sample function of a random process (x(t»). Assume a mean 
ic. value and autocorrelation function are obtained by time averaging over a short 
be interval T with a starting time of I, as follows:  
rd.  
ed  

(1.12a) 

(1.12b) 
lOt 
ler  
!te For the general case where the sample properties defined in Equation (1.12)  
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vary significantly as the starting time (} varies, the individual sample record is 
said to be nonstationary. For the special case where the sample properties 
defined in Equation (1.12) do not vary significantly as the starting time I, 
varies. the sample record is said to be stationary. Note that a sample record 
obtained from an ergodic random process will be stationary. Furthermore, 
sample records from most physically interesting nonstationary random 
processes will be nonstationary. Hence if an ergodic assumption is justified (as 
it is for most actual stationary physical phenomena), verification of stationarity 
for a single sample record will effectively justify an assumption of stationarity 
and ergodicity for the random process from which the sample record is 
obtained. Tests for stationarity of individual sample records are discussed in 
Chapters 4 and 10. 

1.4 ANALYSIS OF RANDOM DATA 

The analysis of random data involves different considerations from the de-
terministic data discussed in Section 1.2. In particular, since no explicit 
mathematical equation can be written for the time histories produced by a 
random phenomenon, statistical procedures must be used to define the descrip-
tive properties of the data. Nevertheless, well-defined input/output relations 
exist for random data, which are fundamental to a wide range of applications. 
In such applications, however, an understanding and control of the statistical 
errors associated with the computed data properties and input/output rela-
tionships is essential. 

1.4.1 Basic Descriptive Properties 

Basic statistical properties of importance for describing single stationary 
random records are 

1. Mean and mean square values 
2. Probability density functions 
3. Autocorrelation functions 
4. Au(ospectral density functions 

For the present discussion. it is instructive to define these quantities by words 
alone, without the use of mathematical equations. After this has been done, 
they will be illustrated for special cases of interest. 

The mean value J.l. x and the variance 0; for a stationary record represent the 
central tendency and dispersion. respectively, of the data. The mean square 
value  which equals the variance plus the square of the mean, constitutes a 
measure of the combined central tendency and dispersion. The mean value is 
estimated by simply computing the average of all data values in the record. 
The mean square value is similarly estimated by computing the average of the 
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Figure 1.11 Four speeial time histories. (a) Sine wave. (b) Sine wave plus random 
noise. (c) Narrow-band random noise. ld) Wide-band random noise. 
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squared data values. By first subtracting the mean value estimate from all the 
data values, the mean square value computation yields a variance estimate. 

The probability density function p(x) for a stationary record represents the 
rate of change of probability with data value. The function p(x) is generally 
estimated by computing the probability that the instantaneous value of the 
single record will be in a particular narrow amplitude range centered at various 
data values, and then dividing by the amplitude range. The total area under the 
probability density function over all data values will be unity. since this merely 
indicates the certainty of the fact that the data values must fall between - 00 

and + 00. The partial area under the probability density function from - 00 to 
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some given value x represents the probability distribution function, denoted by 
P( x). The area under the probability density function between any two values 
Xl and x" given by P(x,) - P(x l ), defines the probability that any future 
data values at a randomly selected time will fall within this amplitude interval. 
Probability density and distribution functions are fully discussed in Chapters 3 
and 4. 

The autocorrelation function R.o:( T) for a stationary record is a measure of 
time-related properties in the data that are separated by fixed time delays. It 
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IFigure 1.13 Autocorrelationprx) 
(d) random noise. (c) Narrow-band 

• x o 
Figure 1.12 Probability density function plots. (a) Sine wave. (b) Sine wave plus 
random noise. (c) Narrow-band random noise. (d) Wide-band random noise. 
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Figure 1.13 Autocorrelation function plots. (a) Sine wave. (b) Sine wave plus 
random noise. (c) Narrow-band random noise. (d) Wide-band random noise. 
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can be estimated by delaying the record relative to itself by some fixed time 
delay 7. then multiplying the original record with the delayed record. and 
averaging the resulting product values over the available record length or over 
some desired portion of this record length. The procedure is repeated for all 
time delays of interest. 

The autospectral (also called power spectral) density function Gxx(f) for a 
stationary record represents the rate of change of mean square value with 

(a) 

• f o 10 

(b) 

L-----!'------=------"------>-fo fo 

(0) 

, f o 

  

o f 
Figure 1.14 Autospectral density function plots. (a) Sine wave. (b) Sine wave plus 
random noise. (c)  random noise. (d) Wide-band random noise. 
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frequency. It is estimated by computing the mean square value in a narrow 
frequency band at various centcr frequencies. and then dividing by 
the frequency band. The total area under the autospectra] density function 
over all frequencies will be the total mean square value of the record. The 
partial area under the autospectral density function from 11 to /2 represents 
the mean square value of the record associated with that frequency range. 
Autocorrelation and autospectral density functions are developed in Chapter 5. 

Four typical time histories of a sine wave, sine wave plus noise, narrow 
band noise, and wide band noise are shown in Figure 1.11. Theoretical plots of 
their probability density functions, autocorrelation functions, and autospectral 
density functions are shown in Figures 1.12, 1.13, and 1.14, respectively. 
Equations for all of these plots are given in Chapter 5, together with other 
theoretical formulas. 

For pairs of random records from two different stationary random processes, 
joint statistical properties of importance afe 

1. Joint probability density functions 
2. Cross-correlation functions 
3. Cross-spectral density functions 
4. Frequency response functions 
5. Coherence functions 

The first three functions measure fundamental properties shared by the pair of 
records in the amplitude, time, or frequency domains. From knowledge of the 
cr,,?ss-spectral density function between the pair of records, as well as their 
individual autospectral density functions, one can compute theoretical linear 
frequency response functions (gain factors and phase factors) between the two 
records. Here, the two records are treated as a single-input/single-output 
problem. The coherence function is a measure of the accuracy of the assumed 
linear input/output model, and can also be computed from the measured 
au tospectral and cross-spectral density functions. Detailed discussions of these 
topics appear in Chapters 5, 6 and 7. 

Common applications of probability density and distribution functions, 
beyond a basic probabilistic description of data values, include 

1. Evaluation of normality 
2. Indication of nonlinear effects 
3. Analysis of extreme values 

The primary applications of correlation measurements include 

1. Detection of periodicities 
2. Prediction of signals in noise 
3. Measurement of time delays 
4. Location of disturbing sources 
5. Identification of propagation paths and velocities 
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Typical applications of spectral density functions include 

I. Determination of system properties from input data and output data 
2. Prediction of output data from input data and system properties 
3. Identification of input data from output data and system properties 
4. Specifications of dynamic data for test programs 
5. Identification of energy and noise sources 
6. Optimum linear prediction and filtering 

1.4.2 Input / Output Refotiom 

Input/output cases of common interest can usually be considered as combina-
tions of one or more of the following models: 

I. Single-inputjsingle-output model 
2. Single-inputjmultiple-output model 
3. Multiple-inputjsingle-output model 
4. Multiple-inputjmultiple-output model 

In all cases, there may be one or more parallel tranSffilSSlon paths with 
different time delays between each input point and output point. For multiple 
input cases, the various inputs mayor may not be correlated with each other. 
Special analysis techniques are required when nonstationary data are involved, 
as treated in Chapter 12. 

A simple single-inputjsingle-output model is shown in Figure 1.15. Here, 
x(t) and y(l) are the measured input and output stationary random records, 
and n(t) is unmeasured extraneous output noise. The quantity H,,(f) is the 
frequency response function of a constant-parameter linear system between 
x(l) and y(I). Figure 1.16 shows a single-inputjmultiple-output model that is 
a simple extension of Figure 1.15 where an input x(l) produces many outputs 
y,(I), i = 1,2,3, .... Any output y,(I) is the result of x(1) passing through a 
constant-parameter linear system described by the frequency response function 
Hx,(f). The noise terms ni(l) represent unmeasured extraneous output nOise 
at the different outputs. It is clear that Figure 1.16 can be considered as a 
combination of separate single-inputjsingle-output models. 

Appropriate procedures for solving single-input models are developed in 
Chapter 6 using measured au tospectral and cross-spectral density functions. 

n(t) 

X(/)----... Hxv(f),"'I --.'-"'O{+f---...
'-____ u(1) (.:) 

Figure 1.15 Single-input/single-output system with output noise. 

x(t}--"'"i--

Figure 1.16 
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