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ABSTRACT

Nonseasonal variability of sea level pressure (SLP) and sea surface temperature (SST) in the mid-latitude
North Pacific Ocean is examined. The objective is examination of the basic scales of the variability and
determination of possible causal connections which might allow prediction of short-term climatic (time
scales between a month and a year) variability.

Using empirical orthogonal function descriptions of the spatial structure, it is found that SLP variability is
concentrated in a few large-scale modes but has a nearly white frequency spectrum. SST variability is
spatially complex (being spread over many spatial modes, some of which have small-scale changes) but is
dominated by low-frequency changes.

The use of linear statistical estimators to examine predictability is discussed and the importance of
limiting the number of candidate data used in a correlation search is underscored. Using linear statistical
predictors, it is found that (A) SST anomalies can be predicted from SST observations several months in
advance with measurable skill, (B) the anomalous SLP variability can be specified from simultaneous SST
data with significant skill, thus showing the fields are related, and (C) future SLP anomalous variability
cannot be predicted from SST data although previous SLP can be specified. The fact that previous SLP
variability is better specified by SST data than is simultaneous SLP variability, coupled with a complete
inability to predict future SLP anomalies, suggests that, in the region studied and on the time scales of a
month to a year, the observed connection between SST and SLP variabilities is the result of the atmosphere
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driving the ocean.

1. Introduction

Consideration of the quantity of heat exchanged
between ocean and atmosphere during the seasonal
cycle suggests that on such time scales the ocean may
play an important role in establishing the atmospheric
climate. The practical importance of short-term climatic
changes has provided impetus for a growing interest in
such variability and the role played by the ocean in
causing or modifying it. Because of the complexity of
possible interactions and the large quantities of data
required to examine them, most studies have concen-
trated on selected geographical regions and time
periods. From such studies has grown the belief that
available data disclose definite connections between
ocean and atmosphere on climatic time scales and the
hope that understanding these connections can lead to
an improved ability to forecast atmospheric climate.
A persuasive argument toward this point of view is
given by Namias (1972a) along with a review of some
of the evidence supporting it.

The present study is concerned with using statistical
predictors to examine connections between thermal
variability in the North Pacific Ocean and variations
in the state of the overlying atmosphere. Attention is

focused on time scales greater than one month and
(because of limitations in the data) less than a year.
Space scales comparable with the ocean basin are of
interest and an emphasis is placed on the spatial
patterns of variability as well as the patterns of ocean/
atmosphere coupling.

The particular data considered here are 28-year
records of sea surface temperature (SST) and sea level
pressure (SLP) anomalies in the central North Pacific.
An anomaly is here taken to be the difference between
the observed value of a variable and the expected or
average value found at the same location and time of
year as the observation. The analytical techniques used
are purely statistical ones aimed at determining scales
of variability, establishing the existence of a connection
between the two fields, and determining the cause of
the connection. Specifically, three hypotheses are
tested:

(A) Oceanic thermal development is sufficiently
regular that SST anomalies can be predicted from prior
SST observations.

(B) Atmosphere and ocean are sufficiently connected
that SLP anomalies can be specified from contempora-
neous SST observations.
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(C) These relations can be combined to allow a
prediction of SLP from prior SST observations.

The third hypothesis does not follow from the first two.
It could easily be the case that oceanic thermal state
is the result of both prior thermal state (through
advection, perhaps) and atmospheric state (through a
relatively rapid forcing such as wind-driven advection);
then (A) and (B) would be true but (C) would not
follow since the flow of information is from atmosphere
to ocean, not the reverse. ’

The statistical techniques employed in testing the
three hypotheses are based on the Gauss-Markov
theorem which allows construction of that linear
predictor with the minimum error variance relating a
given set of data parameters to the quantity to be
predicted. Utilization of the method depends on
knowledge of the covariances or correlations of the
various data parameters and the predictand. While the
method is not restricted to linear systems, no other
predictor, dynamical or statistical, can produce a lower
error variance prediction from the same data parameters
when the system is linear. The analytical techniques
are similar to those used by Roden and Groves (1960)
in their examination of North Pacific SST variability.
The primary difference is that in the present study
basin-wide patterns are considered, rather than values
at particular locations; in view of the large-scale
coherences of SST anomalies found by Favorite and
McLain (1973) and Namias (1972a), it could be hoped
that considering geographical patterns rather than time
series from individual locations might lead to different
conclusions concerning predictability and disclose
different mechanisms.

The primary difficulty of establishing connections
and cause/effect relationships from finite data sets
using statistical methods is what might be called
artificial predictability. This phenomenon is discussed
in quantitative terms in the following section. Simply
put, the problem is that given a finite number N of
realizations of a predictand and a set of data parameters
possibly influencing it, there will always appear to be a
correlation between the predictand and some of the
data variables, even if no true correlation exists. As the
number M of data variables is increased the amount of
apparent correlation between the data set and the
predictand increases roughly as (M/N)*. One is forced,
then, to restrict by some @ priors criterion the number
of variables which are to be considered as data; if this
is not done it will inevitably occur that an apparent
connection between predictand and data will be found,
even if none really exists. The technique of “‘screening,”
in which data poorly correlated with the predictand
are excluded, does little to minimize artificial predict-
ability since it is based on an a posteriort criterion.

In this study empirical orthogonal functions are used
to describe the spatial structure of anomalies. This
accomplishes two useful tasks. First, it provides a
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concise description of the distribution of variance
between various spatial scales and determines how many
different variables are required to describe anomaly
patterns to a given accuracy. For example, it is found
that one spatial pattern accounts for nearly half the
variance of SLP anomalies. The second use of the
empirical orthogonal function representation is that
it provides an objective a priort criterion for limiting
the number of data variables used in examining the
predictability of SST and SLP. This follows from the
fact that empirical orthogonal functions are the most
efficient possible data representation in the sense that
the amplitudes of the M dominant functions describe
more variance of the field than any other possible M
parameter description. A natural way of reducing the
number of candidate data variables then, is to neglect
the amplitudes of patterns which contribute little to
the overall variance.

In addition to providing measures of predictability
and the ability to make useful predictions, statistical
predictors can be used to examine the mechanism.
This is so because once the statistical model relating
subsequent anomalies to various initial data has been
found, it is possible to carry out experiments with the
model. In this way it is possible, for example, to
examine the role of advection in SST anomaly develop-
ment by posing initial data describing an anomaly in
the West Wind Drift region and seeing if the model
“predicts” the anomaly to propagate as expected on
the basis of the currents existent there.

The first topic considered below is the theory of
Gauss-Markov predictors and the problem of artificial
predictability. Then a basic description of the time and
space scales of SST and SLP anomalies is given.
Attention is then turned to examining the three
predictability hypotheses above. Finally, some results
of model experiments are given and their implications
with regard to mechanism are discussed.

2. Linear statistical predictors

The questions of predictability posed by the three
fundamental hypotheses stated in the Introduction all
involve the ability to use the values of a set of data
variables to predict (or specify) the value of some
variable called the predictand. The technique employed
here is to construct an efficient linear statistical
predictor relating the data and predictand and then to
test the hypotheses by the skill of these predictors.
It is assumed that the data/predictand relationship is
quasi-linear.

To examine the properties of the statistical techniques
employed, the value of the predictand is taken as p,
the estimate of p (the prediction) is taken as p, and the
values of the M data parameters are taken as d,. Then
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a linear predictor will take the form

M
P=3" andn.

n=1

The measure of the quality of the prediction must be
statistical. If the quality is measured by the mean
square error then the optimal predictor should minimize

((p—P =2 T anam{dndm)—2 3 anldup)+{p"),

where the angle brackets denote the expected or mean
value. The optimum is achieved by taking

an =2 (dndm)Xdmp), 1)
where (d.d.)™"' is the inverse of the matrix (dndm).
The skill of the resultant prediction might be taken as

)
)

which represents the fraction of ($?) which is predict-
able. Tt is a standard result of estimation theory, the
Gauss-Markov theorem (Liebelt, 1967), that when the
mean (p) of the predictand vanishes the above
predictor produces the minimum error variance and,
for the case of joint normally distributed data and
predictand, the most probable value of p.

The difficulty in direct application of statistical
predictors to finite data sets is that the true values of
the covariances involved cannot be established owing
to the limited number of realizations contained in the
data set. A reasonable approach when the sample
interval is fairly uniform is to replace the mean value
by the sample mean, i.e., by

S=1 = (PN L L (dnp M dndm) Hdmp), (2)

1~
{@=—2 ¢,

N =t
where N is the number of realizations available in the
data set. This causes no fundamental change in the
derivation of the “optimal” predictor which minimizes
the sample error variance {(p—p)2}. If the data are
redefined so that simultaneous data are uncorrelated
over the data set (this can always be done if N> M,
and is true of the empirical orthogonal functions used
here) then because {d.dn} =0,~{d,?} the predictor is

p= 2;1 {dn?}{pdn}dm. )

There are two important measures of the quality of this
predictor, namely, the skill with which it hindcasts $
over the data set from which the sample covariances
were estimated, and the skill with which it predicts
realizations which were not used in establishing the
statistical estimates.
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In the case of hindcasts we will find that the expected
skill is enhanced by artificial predictability. For any
given data set the hindcast skill is, similar to (2), given

> (=)
p___*2 M dn2
3 P }=Z {pd.} .
) n=1 {p?}{d.?}

The quantity of interest is the expected value of Sy or,
equivalently, the mean value when averaged over all
possible data sets of the same structure (size, sampling
interval, etc.). Since the skill Sy depends on squares
of apparent correlations it is evident that, even if the
true correlations all vanish, any error in the sample
correlations will, on average, lead to an increase of skill
above the true value. As the number of realizations
increases, the sample correlations will approach the
true correlations and the expected skill will decrease
until it reaches the value

=

4a)

X (pday
w1 (p2)da?)

which can be considered the true predictability of the
process.

Accurate estimates of the artificial predictability,
defined as (Sy)—S, are in general difficult to make.
Reasonable quantitative estimates, however, can be
made by assuming that the various quantities have
approximately joint normal distributions and that N
is large enough that the sample statistics are approx-
imately correct. Defining

(pd">=Rm <dn2>=Qn, <p2>=Q0
(pdn} =Rutrn, {d2}=Qut-gn, (#9=00Fq0)

(4b)

the expected hindcast skill is approximately

M
<SH>=" E (Rn2+zran+rn2)

n=1

v Qa2 "'QnQu‘i‘an Q02"Q090+902>
0.2 0 :

When V is large the dominant terms will be quadratic
in the errors. Under the assumption of approximately
joint normal distribution, these are easily computed.
For example, by definition,

1 v ~
ri=— % T pOda@p(i)dn (i)~ (pda)’

=1 j=1

and the average of this is easily computed using the
fact that the mean of the product of four joint normally
distributed variables with zero mean is the sum of all
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combinations of covariances so that

N N

1
(rn2>=ﬁ—2 2 2 [p@p (DN @)da(s))
(P (Ddn (7)) (7)d=())].

=1 j=1
It is usually the case that the correlations of p and d,
are small (except when the predictability is very high)
so that it is permissible to neglect the second term as
smaller than the first. Relating the covariances involved
in the first term to the correlation functions defined by

(pWp(+1))=0Co(t), (da(®)da(+1))=0uCa(t),

produces a relatively compact representation for (r.?)
when the sample means are taken from realizations
which are equally spaced by the time interval At. If the
record length NA¢ is long compared with the time scales
of these autocorrelations, then

1 « .
2= 00— 5 ColiA)C (A1) =QoQr—,
" N 02 NA¢
where

Tp= i Co(iA)C, (1AL At

i=—0c0

is an integral time scale determining the time period
required to gain a new ‘“degree of freedom” in the
estimation of R,. It is seen that the degrees of freedom
from a record of N data is not N but rather NA?/7,.
The procedure outlined above can be used to estimate
the size of all the error terms involved in the expression
for the expected hindcast skill {(Sz). When this is done
it is found that the dominant term is the one involving
7.2 Neglecting the smaller terms leads to the result

1 m 7 M 7

(Sp)=S+—3 —=S4——, (5)
N S AL

where all the time scales have been approximated by 7.
Even if the true predictability S is zero a finite skill of
O(M/N) will be found in hindcasting the data from
which the predictor is constructed. It is this dependence
on M which requires an a priori reduction in the number
of data variables; if this is not done the artificial
predictability will outweigh the true predictability S
and will lead to erroneous conclusions about the degree
of connection between the predictand and the data.

A second question bearing on the utility of statistical
predictors concerns the skill expected when a predictor
constructed from a certain finite number of realizations
is used to predict a new, independent realization. It is
interesting to consider, for this case, a slight generaliza-
tion of the predictor (3), namely,

p=K Z_l {dn®} " pdn}dm. ©)
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It should be recalled that the original predictor, which
is (6) with K=1, was chosen to minimize {(p—p)2},
the mean square error over the same realizations used
to determine the predictor. This does not necessarily
optimize the prediction p* of a realization p* which is
not a member of the set used to evaluate {pd=}. The
optimum predictor is the one which minimizes the
expected forecast (as opposed to hindcast) error

. lpdn)
(=)= () =2K X { o Py

i {pda)® >
K2 sy,
+ gl {dn2}2

where some terms have been dropped on the assumption
that because {d.d,}=0 for n>“m that (d,d,,) will be
much smaller than [{d.2) (d,2)]* for ns<m. Since the
realizations from which the statistics were estimated
(without asterisks) are independent of the forecast
realizations (with asterisks) the averages involving
both kinds of variables factor, leaving the expected
forecast skill

(Sp)=1—M=ZK
»”

M (pdn)
m=1 (p*)(dn’) -
A} 2\ (Ao’
e <{P 3\ ( >_
m=t \}dn?}2/ (p*)

Following along lines identical to those used to estimate
the expected hindcast skill produces the result

M T
(Sr)=Q2K~K*)S—-K*— —, Q)
N At

where the variables S, 7 and Af are defined as in (5),
which determined the expected hindcast skill. If
forecasts were the point of interest, (Sr) could be
improved by using the observed Sy and the resultant
estimate of § from (5) to optimize the choice of K,
which will then be smaller than unity.

Egs. (5) and (7) give quantitative estimates of the
prediction skill of realizable predictors in terms of the
true predictability S which could be achieved only if
precise statistics were known. The conclusion is the
obvious one that the predictor performs artificially well
in hindcasting the realizations from which it was
constructed (by an amount proportional to M/N)
and that the same predictor when used on independent
data does not perform as well as is theoretically possible
by a similar amount. This brings out clearly the balances
involved in using statistical predictors both to verify
predictability of a system and to make forecasts from
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new data:

1) Since S is the sum of positive quantities the true
predictability is always increased by using more
prediction parameters, i.e., increasing M.

2) Increasing M always improves the ability to
hindcast, if only because of increased artificial
predictability. Verification of true predictability
requires achieving a hindcast skill considerably
in excess of M7/NAL.

3) Although increasing M improves hindcasts it can
easily harm forecasting skill if the increase in
M7/NAt exceeds the increase in S. It is quite
possible, for this reason, to make statistical
predictors which are worse than predicting the
mean value, p={p), since {Sr) can be driven
negative by the M/N term.

4) Given the hindcast skill it is possible to estimate
the true predictability S and, using this
estimate, to optimize the forecast predictor (6)
by choosing K to maximize (Sz).

It must be emphasized that these considerations
pertain only if the data variables d, are chosen by an
a priori criterion. The origin of the M/N terms is the
fact that any variables will appear correlated in a
finite data set, even if they are not truly correlated.
Choosing as data those variables with large apparent
correlations may simply involve finding the large
artificial correlations; given a large number M of
uncorrelated data the m data with highest apparent
correlation will produce an artificial predictability
closer to M/N than to m/N.

It is worth pointing out that the predictability skill
S as given by (2) or, for the case of uncorrelated data,
by (4) provides a convenient measure of the total
correlation between the variable p and the set of data
da. It can easily be computed once the individual
covariances have been estimated. In this way deter-
mination of the predictability is easily accomplished
without ever carrying out a prediction. It must be
recalled that any such estimate is actually an estimate
of (Su) and will, on average, be larger than the true
value. Further, it must be noted that .S is a weighted
sum of squares of correlations so that S* is most nearly
the total correlation.

3. Scale description

The data used in this study were 28-year records
(1947-74) of monthly mean values of SST and SLP in
the central North Pacific (20°N to 55°N) on 5° latitude
by 10° longitude grids. The construction of these basic
monthly maps, which were made available to me
through the generosity of Jerome Namias of Scripps,
and the data grids are described more fully in Appendix
A.

The first analysis step was the preparation of anomaly
maps. A mean value was found for each grid point and
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Fic. 1. Standard deviation of SLP anomalies (mb), upper, and
SST anomalies (°C), lower. Anomalies are departures from
monthly normal values. The anomaly variances are averaged
over all months of the 28-year record.

month of the year by averaging over the 28 years.
The resulting maps of monthly normal states showed no
significant departure from the seasonal norms of SLP
found by O’Connor (1961) and of SST found by
Robinson (1975). The analysis here concerns anomalies
defined as the departures of the observations from these
monthly normal fields.

The mean square anomaly distribution shows
interesting differences between the character of SST
and SLP variability. The maps of mean square anomaly
in each month of the year may be characterized
qualitatively as follows!:

(a) In each month the region of maximum SST
variability is a band around 40-45°N extending east-
ward from Japan with variability decreasing to the
east. The most variable locations are the four grid
points with latitudes 40 or 45°N and longitudes between
150 and 165°E (south of Kamchatka) and this variabil-
ity shows a broad maximum through the cooling
season centered around November. The variability in
the eastern part of the active band (around 160°W) is
greatest in the summer with a secondary maximum in
January. The centers of activity are shown in Fig. 1 in
which the standard deviation of SST anomalies
(averaged over the entire year) are plotted.

(b) The geographical pattern of SLP variance shows,
in every season, a large-scale maximum centered near
the Aleutians. While the precise center of activity
moves relatively little through the year the magnitude
of activity shows a pronounced broad maximum in the
cooling season centered around November; during
this season the center of variability is generally to the

! General conclusions are labeled by lower case letters which
will be used in subsequent reference to them.
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Fic. 2. The fraction of total SST (circles) and SLP (triangles)
anomaly variance accounted for by the first M empirical orthog-
onal functions.

south of the minimum in the Aleutian low. The yearly
mean of pressure variability is shown in Fig. 1.

The second step of analysis involved representing
the monthly anomaly maps of SST and SLP in terms
of the dominant empirical orthogonal functions of these
fields. The properties and details of this kind of rep-
resentation are discussed in detail by Lorenz (1959) and
in Appendix B. The full power of this technique can
be appreciated only from such discussions but the
major virtue in the present context.is that it allows an
efficient approximation of the data using less parameters
than contained in the full set of complete maps. For
example, the maps T'(x,f) of SST for month ¢ can be
approximated by

T(5f)= 3 0n(l)Tnle), ®)

m=1

where M is a number less than the number of grid
points x. Choosing the functions of grid position T',.(x)
as the dominant M empirical orthogonal functions leads
to the smallest sample mean square error

> {(T-1T) 9)

which can be obtained from any set of M functions.
The additional properties of the empirical orthogonal
functions T,,(x) [and the analogous functions P, (x)
for the SLP field] are that the functions are orthogonal

according to
Z T” (x) Tm (x) = 6nm,

and that the amplitudes are uncorrelated over the data
set, that is
{020} =8nm{0n"},

with an equivalent relation holding for the SLP
amplitudes 7. (¢). »

The criterion used to define the empirical functions is
admittedly ad hoc. Equal weighting of the square
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error from each grid point in (9) could be replaced by
any other weighting, such as a weighting proportional
to the physical area of the associated 5° by 10° box,
and slightly different empirical functions would result.
It is a basic hypothesis of this analysis that the appro-
priate measure of variance is the sum of squares over all
grid points and from this assertion the particular error
criterion (9) follows, as does the hypothesis that the
least “‘important” modes of wvariability are those
associated with the smallest mean square amplitude.
It will be seen later that the latter hypothesis is not
strictly correct and that the development of the
dominant SST patterns can be influenced by empirical
functions which contribute little to the overall SST
variance. .

Computation of the empirical orthogonal functions
involves finding the eigenvectors (the empirical func-
tions) and the eigenvalues (the mean square amplitudes)
of the covariance matrix of simultaneous data from
different locations. The matrix used was the sample
covariance obtained by averaging all months together
into an overall mean. The number of pairs averaged
was slightly less than 336 for certain elements of the
SST covariance matrix because some data were missing.

Orthogonality of the empirical functions makes
computation of the amplitudes 8. (¢} and =, (¢) straight-
forward except in the case of missing data. In this case
an objective amplitude estimate was used. The ampli-
tude was taken as

0 =5n 2 T()Ta(w),

where the sum over x includes only those points where
T is known ; when there are no missing values the choice
B»=1 produces the exact amplitude. The mean square
error of this amplitude estimate is

((6,—0,)%) =42 };, (0m®YY nm2+[14-B(vnn—1)J%0.),
where

Yam= Z* Tﬂ (x) Tm (x)

with the sum over x* being taken over the missing data
points. Minimization of this expected square error leads

to
_ (1 _'Ynn)<0n2>
(1 =) ¥0.2)+ >; OV am®

Bn

The number of missing points was small enough that
the expected error of the dominant amplitudes was
small. In no case did the relative expected error in
estimating any of first 15 amplitudes exceed 309% and in
only three months did it exceed 10%.

Some of the fundamental difference between SST and
SLP variability is disclosed through examination of the
basic empirical function description. The most obvious
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Fi16. 3. The six principal empirical orthogonal functions, P,~Pg, describing SLP anomalies.

differences are as follows:

(c) A relatively few large-scale patterns (empirical
functions) describe most of the month to month SLP
variability whereas many more patterns, some of which
contain rapid variations over small scales, are required
to describe SST variability to the same accuracy. This
is shown by Fig. 2, a plot of the fraction of variance
associated with the first few empirical functions, and
Figs. 3 and 4 which show, respectively, the dominant
SLP and SST functions.

(d) As the spatial scales of SLP variability are long
compared with those of SST so are the time scales of
SST anomalies significantly longer than those of SLP.
This anticipated result is demonstrated in Fig. 5 which
shows the frequency spectra of 6; and =1, the amplitudes
of the dominant SST and SLP patterns. The spectra
of the dominant six SLP modes are similar to that of
P, and those of the dominant 10 SST modes are similar
to that of T except for a general increase in the relative
tmportance of higher frequencies in the higher modes,

The spectra presented in Fig. 5 were computed from
Fourier transforms of four overlapping blocks of 8-year
length taken from the 28-year records and the spectral
estimates for frequencies above one cycle per year
represent a block average over three adjacent frequency
bands. The composite spectrum obtained by averaging
the spectra of the dominant 10 SST modes shows no
significant finestructure and discloses no tendency
toward a decrease of spectral intensity as frequency

approaches zero; the lower spectral density in the zero
frequency band shown in Fig. 5 is neither statistically
significant nor a general feature. Similarly, the compos-
ite spectrum of the six dominant pressure patterns
discloses neither significant finestructure nor evidence
of any departure from a smooth spectrum, decreasing
very slowly with increasing frequency.

Some final scale-descriptive observations can be made
by comparison of the spatial distributions of variance
and the empirical functions. The first pressure pattern
P, so dominates the SLP variability that it rather
strongly resembles the distribution of variance itself.
In contrast, the dominant SST pattern bears little
resemblance to the distribution of variance; while the
greatest SST wvariability is concentrated south of
Kamchatka the two dominant patterns seem to be
descriptive of the central portion of the ocean and the
subarctic gyre, respectively. The large variance asso-
ciated with the active region south of Kamchatka
seems to be divided among several different modes
(Ts, Ts, T, Ts, for example) indicating that the
energetic variability in this region does not involve
uniform SST changes over the entire area but is of a
smaller scale, probably not adequately resolved by the
present grid. The conclusion that the central ocean
variability is of a different character than that in the
active western ocean is supported by the difference in
the annual cycles of anomaly variance noted in (a).

In short, SST and SLP anomalies are characterized
by a broad distribution of scales which are not well
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Fic. 4. The eight principal empirical orthogonal functions, T\—T's, describing SST anomalies.

matched. SST variability appears to have a continuous
spectrum dominated by low frequencies (lower than
can be resolved in a 28-year record) with a rich distribu-

100 r

1 P R R

0 1 2 3 4
FREQUENCY (cycles/year)

F16. 5. Frequency spectra of 9;, the amplitude of the dominant
SST mode (circles), and m, the amplitude of the dominant SLP
mode. Spectral units are arbitrary.

tion of space scales whose statistics are strongly depen-
dent on position. SLP variability is also inhomogeneous
but is dominated by large spatial scales and a nearly
uniform distribution of time scales.

4. Predictability

As discussed in the Introduction, the objective of this
study was testing the three hypotheses (A) SST
anomalies can be predicted from prior SST data, (B)
SLP anomalies can be specified from SST observations,
and (C) SLP anomalies can be predicted from prior SST
observations. It was pointed out that (C) need not
follow from (A) and (B) since the present SST variabil-
ity could be the result of both predictable oceanic
processes (such as advection) and atmospheric forcing
[thus explaining the connection between SST and SLP
which leads to (B)7J, but this would not allow prediction
of SLP, since it would be a cause, rather than an effect,
of SST variability.

Because of the problem of artificial predictability,
discussed in Section 2, it is necessary to limit the
number of parameters of the SST field which can be
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considered as data for prediction or specification, and
this limitation must be imposed by an a priori cri-
terion not related to data/predictand correlation. It
Is also necessary to maximize the number of realiza-
tions used to construct the sample covariances upon
which linear predictors are based. Reduction of the
number of data parameters was accomplished by
including as data only the amplitudes of the ten
dominant empirical functions. This reduced the number
of degrees of freedom in the basic SST anomaly maps
from 73 to 10. The need to maximize the number of
realizations used in examining predictability and
correlation prevents treatment of individual seasons.
This is so because the time scale of SST anomalies is
comparable with a season and consequently use of data
from only one season would lead to an expected artificial
predictability approximately equal to

from the present 28-year record. Since the true pre-
dictability or correlation is of this order, any conclusions
based on seasonally stratified correlations must be
regarded as quite uncertain owing to lack of statistical
reliability. A similar effect prevents examination of
time scales in excess of a few months since the correla-
tion time scale r of these components will exceed
significantly the shortest time scale admitted. Thus if a
6-month filter were applied to the data the correlation
scale of SST could be expected to approach one year
and any less than perfect correlation could not be
regarded as significant. As a consequence of these
considerations it appears that:

(e) The available 28-year record does not allow
statistically significant conclusions to be made about
more than a few SST parameters, time scales in excess
of a season, or seasonally dependent correlations.

Before turning to the results of testing the hypotheses,
it is important to point out the restrictions on the kinds
of SST/SLP connections which can be examined by
the techniques employed here. The analysis is based on
correlation of temporally and spatially smoothed data
because the data are monthly averages and only a few
of the empirical spatial functions are admitted. Some
processes have, therefore, been removed from considera-
tion, most noteworthy being synoptic scales in the SLP.
Because of this filtering, and because the analysis is
based on correlations rather than higher order statistics,
the relationship between SST wvariability and the
intensity of synoptic-scale activity, for example, cannot
be examined. Most other plausible effects should,
however, be disclosed. Persistence of oceanic heat
anomalies and their advection by major currents
should appear, respectively, in the time-lagged auto-
correlations and cross correlations of the amplitudes of
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SST patterns. SST variations resulting from advection
by wind-driven fluctuating currents will be disclosed by
cross correlations between SST patterns and SLP.
This effect will lead to cross correlations not totally
dissimilar to those associated with atmospheric circula-
tion changes resulting from anomalous heat fluxes
correlated with SST. Any other similar quasi-linear
effect will also appear, whether the mechanism involves
correlations between local values of SST and SLP
or between local derivatives (in time or space) of these
fields. Use of the empirical function representations
allows discovery of processes which are spatially
inhomogeneous or occur only at selected locations.
The diiicult problem of inferring mechanisms from
the various correlations is discussed in a subsequent
section,

The procedure for testing the three fundamental
hypotheses is to examine the skill with which the
optimal linear statistical predictor hindcasts the 28
years of available data. The predictand considered
representative of SST is T', the field described by the
dominant ten empirical functions T through Tyo. The
SLP predictand is P, the portion of SLP anomaly
described by the five dominant modes P; through Ps.
These spatially filtered fields account for 73 and 849,
of the respective total fields of variability. In either
case the data were the amplitudes of the first ten SST
empirical functions from a single month, so that M of
Section 2 has the value 10. In order to investigate the
possibility that different time scales of variability
have different predictability, separate examinations
were made of the basic records of one month averages
and of records smoothed by a three month running
mean filter with equal 3, 3, § weights. As discussed in
arriving at (e), examination of longer time scales is
prevented by consideration of artificial predictability.

The quantitative measure of predictability is based
on the mean square error between the estimates, Por
T, and the corresponding observations, P or T. For
each observed month the square errors are summed
over the spatial grids and the skill index Z is computed
from the mean value of this square error averaged over
the 28 years of data. If we let Q be the variable being
estimated (either T or P) and ¢, be the corresponding
empirical function amplitude, then the skill index,
measured as the fraction of variance predicted, is

Z=1-L{Q-0%/T (@} =1-% {(g»~4)?}/{¢}

=2 2 {gndn}/[{dn’} - {¢"}]
=2 {g.}Se(m)/{¢*}, (10)

where {¢%} =3 .{g.?}, and Sg(n) is the skill of estimat-
ing g. as defined in (4a) with the predictand p being
g» and, for both SLP and SST estimation, the data d»
being the amplitudes 6. of the ten dominant SST
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Fic. 6. Correlations between amplitudes of various SST and
SLP modes. The amplitudes of SST mode » and SLP mode m
are 0, and 7, respectively. The abscissa is the time lag ¢’ so that
the curve labeled (8:8,') is the correlation of 8:() and 8,(t+¢').
Thus, significant correlation of 7, and 6; occurs only when 7y leads.

patterns. The covariance {pd,,} appearing in (4a) is
then the covariance of 6,(¢") and ¢.(t'+{) where ¢ is
zero for a specification and is, when positive, the range
of the forecast. In the case of the three month averages
the only change in the skill index is that the quantities
6 and = appearing in (4a) and (10) are the smoothed
values rather than one month averages.

In assessing the utility of a prediction associated
with a particular skill index it is important to note
that Z is the square of the correlation between the
predicted and observed fields, i.e.,

ZAQOMIZ QY- ZHY D
=§ {¢+44}/[{¢* ; {¢.2} ]t
=§ }7; {gndn}{dn’} {47} an % {gndn}*{dw’} 7 I
=§ a2y Se(m)/{gy =22

Thus a skill index Z equal to 0.1 corresponds to a
correlation between prediction Q and observation Q,
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summed over the entire grid, of 0.3; this would probably
be a useful prediction.

The long time scale of the SST variability, as seen
in the spectrum of Fig. 5, suggests that SST is reason-
ably predictable, even if only as the result of persistence
of individual patterns. That such persistence is not the
complete story of SST anomaly development can be
seen from the cross correlations between amplitudes of
different empirical patterns. Although simultaneous
amplitudes are uncorrelated, many amplitude pairs
show increasing cross correlation with increasing time
separation up to a year. This is shown in Fig. 6 where

" various selected SST and SLP correlations are presented.

The occurrence of time-lagged cross correlations
between different SST amplitudes shows that thermal
anomaly development involves regular pattern trans-
formations such as might result from advection by
permanent currents. The patterns of anomaly develop-
ment are discussed later; the point of interest here is
that predictability does not depend on persistence alone.

The skill of hindcasting SST in month #4¢ using
SST data from month # is shown in Fig. 7, for both one
and three month averaged records as a function of time
lag t. The skill of estimating SST in months prior to the
data month (negative lags) are shown along with the
skill of forecasts. Estimates of artificial predictability,
made from the unapproximated form of (5) and the
observed sample correlations, indicate that the expected
hindcast skills in the case of no true predictability are
0.12 and 0.18 for the one and three month averages,
respectively. The skill exceeds significantly the artificial
predictability for all lags from —12 months to +12

1.0

0.3
2 |

0.1 SLP 3mon.av.
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Fic. 7. Skill of estimating SST and SLP in month {+lag using
as data ten SST modes from month ¢. The skill index Z, described
in the text, measures the fraction of the entire spatial field
correctly estimated. The top two curves refer to estimating one
and three month averages of SST; the lower two curves are SLP
estimation skill. The horizontal lines at the right are the artificial
skill expected when there is no true skill.
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months. Although the error rises rapidly with lag, it is
likely that the predictions of one month averages are
useful for time separations up to three or four months
while prediction of three month averages may be useful
for time lags of six months or more. Again it must be
noted that Z is the square of the correlation between
observation and estimate. The degree of predictability
of SST from SST data leads to the conclusion that:

(f) Hypothesis A is correct and SST is reasonably
predictable from observations of SST. The predictability
is primarily the result of persistence of individual
patterns but there are significant cross correlations
between modes, as there would be if SST anomalies
undergo advective displacements or scale conversion.

Before turning to the question of the degree to which
SLP anomalies are determined by SST variability it is
instructive to examine how well SLP can be predicted
from prior SLP data alone. From Fig. 7 it is clear that
there is some correlation of 7; at one month separations.
There are other weak correlations at one month
separation which lead to a total skill of 0.041 for a one
month prediction of SLP from SLP data. This signif-
icantly exceeds the expected artificial predictability
(which is 0.015) but is certainly too small to be useful;
longer range predictions show no evidence of any true
skill. It must be remembered that correlation of one
month averages separated by one month does not
imply that the fields themselves are correlated at one
month separations. The correlation could result entirely
from averaging and the fact that a short time scale
disturbance at the boundary between two adjacent
months will influence both monthly averages.

Because the question of predictability at ranges
exceeding a few days is of considerable interest it is
worth examining the significance of the autocorrelation
of 71 averages at one month separation. The short time
correlation (for time separations much less than a
month) of pressure patterns is often approximated by
the form

R(r)y=e",

where a is of the order of 0.25-0.3 day™ (cf. Leith,

1973). This correlation implies that pressure develop-
ment is a Markov process and would then be predictable
only through persistence. It is straightforward (Munk,
1960) to show that the corresponding correlation of
adjacent one month averages would be approximately

0.5[(30 days) —1]-1~0.06-0.08.

The autocorrelation of m; exceeds this value by a
statistically significant amount. One must conclude
either that pressure development over the Pacific is not
a Markov process (there is some intrinsic predictability)
or that the time scale of the dominant pressure mode
approaches 8.5 days, a value approximately twice as
long as usually accepted for mid-latitude pressure
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patterns. Without additional data this question cannot
be resolved. In any case, it does not seem likely that one
month statistical predictions of pressure which use as
data only previous pressure observations will lead to a
useful level of skill.

The two hypotheses B and C, which are concerned
with how well SLP can be specified (estimated at the
same time as data is observed) and predicted, can be
examined by the same procedure as used for SST. The
only changes are that in (10), which defines the skill
index Z, Q becomes P and ¢, becomes =,. The resulting
skill for estimating P at time #+¢ from SST data at
time ¢’ are shown in Fig. 7 for positive ¢ lags (prediction),
zero lag (specification), and for negative lags (estimat-
ing previous SLP from present data). This curve shows
quite clearly that SST and SLP anomalies are coupled
and suggests that the atmosphere is cause and the
ocean is effect; it is clear that the atmospheric response
to SST is at least undetectable. It is remarkable, in
fact, that the SST data specifies the SLP three months
previous with considerably greater accuracy than it
predicts SLP in the following month. The skill of a
one month prediction of monthly mean SLP anomaly
from SST data is slightly less than the expected
artificial predictability and is also less than the skill of
the equivalent prediction using SLP data; the SLP
data are associated with considerably smaller artificial
predictability.

SLP anomalies are so well correlated with SST
variability that the connection can be seen directly in
the time series of the amplitudes of the dominant SLP
pattern, P, and the dominant SST mode, T, shown in
Fig. 8. On the basis of the similarity of =1 and 6, one
does not hesitate to conclude that a connection exists
and the predictability results confirms that:

(g) Hypothesis B is correct and the connection of
ocean and atmosphere is strong enough to allow skillful
specification of SLP using simultaneous observations
of SST.

What is not so clear from Fig. 8 is that SST lags SLP.
This was shown clearly for the two amplitudes 8; and
71 by the correlation function plotted in Fig. 6. From
the estimation skill Z one concludes that it is true for
the entire fields and that:

(h) Hypothesis C is not true. Seasonal time scale
anomalies of SLP cannot be predicted from SST,
apparently because the primary coupling is atmosphere
driving ocean. The process of estimating simultaneous
SLP from SST data is evidently specifying cause from
observed effect which is possible because the one month
averaging interval is comparable with the time scale
of the interaction.

Further discussion of the significance of these results
is deferred to a later section.
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5. Model predictions

In the previous section the hindcast skill of statistical
estimators based on SST data was examined. The
structure of these estimators, described in Section 2,
is that an estimate or prediction is made as a linear
combination of input data. As such, they represent a
kind of model of the process which, although based on
observation rather than “first principles,” functions in
very much the same way as dynamical models and can
be used to carry out model experiments which describe
the behavior of the system.

In addition to the conclusions which can be drawn
from the prediction skill [see conclusions (e), (f) and
(g)] something of the structure of basin-wide, seasonal
time-scale, oceanic and atmospheric variability can be
learned from the structure of model simulations. A pro-
cedure for such examination is to propose an initial SST
anomaly as data and examine the model specification
of the associated simultaneous SLP anomaly and the
model predictions of subsequent SST anomaly develop-
ment. The procedure is then similar to proposing initial
data for a numerical model and observing the simulated
development. The only restriction is that the initial
data must be made up from the ten SST empirical modes
used as data for the model. All simulations described
are for three-month average anomalies.

A number of such model simulations have been made
and the following qualitative observations hold:

(i) There appears to be a regular relationship between
SLP anomalies and the SST data from which they are
specified. In most cases the regions of cool SST coincide
with regions of anomalous geostrophic wind from the
north or northwest, and vice versa for warm anomalies.

(j) The dominant features of SST anomaly predic-
tions are propagation to the east in the region between
30 and 45°N and a general tendency toward conversion
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to larger scales. There are, however, initial anomaly
patterns whose development is not described by large
scale advection by known current systems.

Fig. 9 depicts the model simulations of three month.

averages associated with an initial SST anomaly
described by the dominant mode 7, with 6,=8°C.
The associated simultaneous SLP anomaly is as large
as 4.5 mb and consists almost entirely of the dominant
SLP mode P;. Accepting that the SLP anomaly is cause
rather than effect, plausible explanations for the SST/
SLP connection are (1) wind-driven oceanic advection,
with south winds over the central ocean advecting
' northward warm water and north winds off the North
American coast producing advection southward and
possible upwelling ; or (2) surface heat flux, with south
winds over the central ocean bringing northward
warmer and more humid air than normal with a result-
ant anomalous heat flux to the ocean and much the
reverse occurring along the North American coast.
Also shown are predicted SST anomalies after six
months and one year. The regular SST development is
obvious and could be described as eastward advection
by the Pacific West Wind Drift; the motion of the
small negative temperature anomaly initially at 20°N,
150°E could be ascribed to advection by the western
boundary current system of the subtropical gyre.

Fig. 10 further demonstrates the general relation
between simultaneous SST and SLP anomaly patterns.
The specified SST anomalies are made up of less
dominant modes, specifically T3 and Ts. Despite the
fact that these modes are relatively more susceptible to
noise, of both statistical and observational origin, clear
patterns of associated SLP anomaly emerge and in
both cases the general observation (i) holds true. In
fact, a search of the SLP anomaly associated with the
ten dominant SST modes discloses no contradiction to
this statement, although for the higher, less energetic
modes the relationship is somewhat clouded by what
appears to be noise.

Fig. 11 explores the development of an initial SST
anomaly composed of Ty and T5 (0,=6°C, 6;=2°C)
which are patterns associated with much less energy
and much smaller scale than the dominant mode
examined in Fig. 9. The development demonstrates the
tendency of the higher modes, with their smaller spatial
scales, to convert into large-scale patterns, a tendency
which was inferred from the asymmetry of the SST
prediction skill curves (see Section 4). Also evident in
the curve is eastward propagation in the West Wind
Drift region. The conversion to larger scales is a general
feature of all simulations investigated but eastward
propagation, although typical, is not always found.

6. Conclusions

The conclusions of this study fall into three catagories,
namely, those concerning analysis methodology, scale
description and predictability.
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The discussion of Section 2 underscores the impor-
tance of limiting the number of possible data parameters
before carrying out a statistical examination of correla-
tion and/or predictability. If the number of realizations
in the set of observations is finite then an exhaustive
search of all possible data/predictand pairs will almost
inevitably show some apparent correlations, even if no
true correlation exists. These apparent correlations
imply a degree of predictability which is artificial.
The results of Section 2 show that the candidate data
variables admitted for examination should be limited
by an @ priori criterion and that their number should
be reduced until the expected artificial predictability
is significantly less than the predictability found;
this makes it likely that application of the predictor to
data not included in its construction will lead to fore-
casts not seriously deteriorated by statistical uncer-
tainty in the covariances used in building the predictor.
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The forecast range is up to one year.

The expected artificial predictability, and hence the
maximum number of admissable data variables, is
determined by the ratio of the length of the series of
observations and the integral time scales 7. (defined
just prior to Eq. (5)] which measure the time required
to obtain a new ‘“degree of freedom” in estimating the
data/predictand correlations. Representation of the
data in terms of empirical orthogonal functions provides
a seemingly plausible way of eliminating data variables,
namely deleting those modes which contribute little to
the variance of the data field.

The time scale of SST and SLP anomalies are
characterized by the frequency spectra of the ampli-
tudes of the associated empirical modes. The spatial
scales are characterized by the fraction of variance
associated with different empirical functions in much
the way that Fourier spectra associate variance with
trigonomeric functions with different wavenumbers. In
this investigation it was found that? (a) the region of

2 Lower case letters refer to conclusions found in the text.
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maximum SST variability is in the western part of the
Pacific West Wind Drift while (b) SLP variability is
greatest just south of the Aleutian Islands. SLP
variability is concentrated in a few spatial patterns with
large spatial scales while SST wvariability has a rich
spatial distribution encompassing many modes (c).
SLP wvariability is described by a nearly uniform
distribution of variance by frequency whereas SST
anomalies appear to be characterized by a ‘“red”
frequency spectrum without any apparent peak at
periods less than 8 years (d).

While the above conclusions are fairly well defined,
any estimate of predictability found by a statistical
examination must be interpreted with care. On the one
hand, it is always possible that the prediction skill
evidenced is artificial predictability resulting from
fortuitous coherence of variables which are actually
uncorrelated, it must be remembered that only the
expected artificial predictability can be estimated. On
the other hand, once artificial predictability is accounted
for, the skill of a statistical predictor must be considered
as a lower bound for the predictability of the system.
This is so because the statistical predictor must, in
order to obtain statistical reliability, be based on a
limited numer of data parameters, or potential “causes.”
It is always possible that the most relevant data
variables have been excluded, thus giving a low estimate
of predictability. It is inevitable, then, that a statistical
predictability study is subject to criticism as to choice
of data. Unfortunately, rectification of this limitation
cannot easily be achieved without some a priori
criterion for choosing the data. It is here that models,
theoretical or numerical, play a valuable role in isolating
potential causes and effects.

There are three specific ways in which the predictabil-
ity results of the present study may be misleading.
First, the choice of SLP as the description of atmo-
spheric circulation may be unfortunate in that other
atmospheric variables could show a greater influence of
SST. It is to be recalled that Namias, for example,
usually employs 700 mb height data as the indicator
of circulation. Equally it is plausible that variables like
cloud cover, precipitation, stability or storminess show
a greater response to SST than does pressure. A second
possible criticism is that the choice of the ten dominant
empirical SST modes is inappropriate and that elimina-
tion of the less energetic modes leads to loss of predict-
ability. A third criticism is failure to account for
seasonal differences in the processes which lead to
predictability. To do so requires construction of
different estimation models, based on seasonally
stratified statistics, for the different seasons. The
difficulty is that seasonally stratified statistics are based
on less observations than the year-round statistics
employed in this study. The first predictability results
obtained during the course of this study were, in fact,
constructed from seasonally stratified statistics and it
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was from these results that the importance of artificial
predictability was noticed. It is clear from such studies
that reliable SST/SST predictors using more than
about eight data variables cannot be constructed from
seasonally stratified statistics (e). Owing to the short
time scale of SLP anomalies it is, however, possible to
construct a seasonally dependent estimator of SLP
using a reasonable number of SST modes as data, and
this has been done.

The procedure of testing for any increase in predict-
ability of SLP by accounting for seasonally dependent
processes was the following: Separate estimators were
constructed for estimating SLP anomalies using SST
data in cold months (November through April) and
using SST in warm months. The resulting skill indices
for estimating monthly SLP anomalies from monthly
SST data are shown in Fig. 12. The results, aside from
ageneral increase in skill resulting largely from increased
artificial predictability, are similar to those obtained
using year-round statistics.

Bearing in mind the limitations mentioned above, the
results of the present predictability study may be easily
stated. The persistence and regular pattern transforma-
tion of SST anomalies does allow their prediction using,
as data, observations of SST (f). This is particularly
true of three month average anomalies which can
apparently be predicted six months in advance. The
general features of such predictions are propagation to
the east in the region of the Pacific West Wind Drift
and a gradual transformation to larger scales (j). SST
and SLP anomalies are sufficiently well correlated that
SLP can be specified, with demonstrable skill, using as
data SST observations from the same month (g).
It is similarly possible to estimate prior SLP anomalies
from SST data, the greatest skill being obtained in
specifying the SLP anomaly one month prior to the
time of observing the SST data. The relationship
between SLP anomalies and the associated SST
anomaly is a regular one described by geostrophic winds
from the southeast overlying warm SST anomalies and
vice versa (i). Despite a good simultaneous connection
between SST and SLP it is not possible to predict
future SLP anomalies from SST data using the method
examined here (h). In fact, greater true skill in predict-
ing SLP anomalies is achieved using SLP data than
using SST data.

The connection of simultaneous SST and SLP
anomalies is in substantial agreement with those found
by Roden and Ried (1961) and by Namias (1972b).
The lag of SST anomalies behind the associated SLP
anomalies was also found by Roden and Groves (1960).

It is the belief of the author that the predictability
results lead to the conclusion that the observed associa-
tion of SST and SLP anomalies having approximately
seasonal time scales is the result of atmospheric forcing
of the ocean. This does not preclude possible back
forcing, ocean to atmosphere, but does suggest that (1)
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the effect is very weak, and (2) that ability to predict
SST from SST plus ability to specify simultaneous
SLP from SST observations does not mean that SLP
can be predicted. SLP could not be predicted if, as is
suggested here, the ocean has thermal memory and is
subject to atmospheric forcing. The present state of
SST would then be the result of recent atmospheric
causes, allowing specification of simultaneous monthly
average SLP anomalies, and the result of prior forcing
whose effects persist, allowing predictability of SST
from prior SST.

An additional argument in favor of the idea that
observed seasonal SST anomalies are the result, not the
cause, of SLP anomalies, comes from the general
pattern relating the two associated fields. The observed
relation is one of northward flowing geostrophic winds
overlying warm SST anomalies. In their numerical
modeling study of atmospheric response to SST forcing,
Salmon and Hendershott (1975) find the dominant
atmospheric response to be a high pressure region south
of a cold SST anomaly. The observed pattern is that the
SST anomalies are generally south of the SLP anomaly
and centered longitudinally about the position of
maximum north/south wind rather than the maximum
pressure. Salmon and Hendershott do, however, find a
realistic SLP/SST connection when they allow the
ocean to respond to the atmosphere through heat fluxes.
This result together with results of the study by White
and Clark (1975) show that SST anomalies may be the
result of anomalous heat fluxes. This could explain the
observation that southeast geostrophic winds, which are
likely to bring north warm moist air and result in an
anomalous heat flow to the ocean, are associated with
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warm SST anomalies. It is, however, equally plausible
that northward oceanic currents, driven by southeast
geostrophic winds, cause warm SST anomalies through
advection in the northward gradient of oceanic
temperature.

Because of the vital importance of possible prediction
of environmental factors, both atmospheric and oceanic,
the results of this study cannot be taken as final.
Clearly, the suggested oceanic response to atmosphere
can be exploited to provide an improved ability to
predict upper ocean thermal structure and work toward
this end is under way. Further, it is essential to continue
exploration of possible ways of predicting short-term
climate fluctuations in the atmosphere and SST cannot

be ruled out as a potential predictor. The present study

must be expanded upon before it is to be accepted that
the ocean is not a significant factor in determining
atmospheric variability on seasonal time scales. It is,
however, clear that future claims of predictability from
oceanic variables must rest on more than demonstration
of a connection between ocean and atmosphere.
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APPENDIX A
The Namias Data Sets

The analysis described here was performed on
“finished” data sets made available through the
generosity of Jerome Namias and Robert Born of
Scripps. It must be emphasized that their effort
associated with obtaining the basic data and generating
the finished data sets greatly exceeds that expended in
the analysis reported here.

The SLP data were originally obtained from the
Long Range Prediction Group of the National Meteoro-
logical Center as one month averages on a 5° diamond
grid (i.e., 20°N-140°W, 20°N-150°W, . .., 25°N~
145°W, 25°N-155°W, etc.). The data were transferred

kv)
£a3

20° ’ > : )
1 I |
120°€ 160°
F1c. 13. The grids of SST and SLP data. Ten degree by five
degree SLP averages are centered at grid intersections and SST
averages are centered at crosses.
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onto the regular 5° square grid used by Namias’ group
using linear interpolation from the four nearest diamond
grid points to fill in the square grid.

The SST data were obtained primarily from the
National Marine Fisheries Service in the form of
averages over one month and 2° squares. Because this
grid spacing is not a submultiple of 5° and because
data were sometimes “bad” or missing the following
analysis scheme was employed. The 2° data were
subjectively analyzed to produce ‘“‘maps’ contourable
with a 1°F contour interval. During this stage “bad”
points were altered and missing data filled in where
feasible. These ‘“corrected” data were linearly inter-
polated onto a 1° grid and 25 values averaged to provide
area averages on the standard 5° grid.

It is recognized that the subjective aspects of this
procedure may be regarded as undersirable and that
the quality of the basic ship intake temperature reports
is not high (see Saur, 1963). Robert Bernstein and
Richard Wert of Scripps are presently gathering the
raw ship reports and objectively analyzing them as
part of the NORPAX program. This should eventually
lead to a more precise determination of data quality
but it is believed that for present purposes the Namias
data are adequate and the analysis method, based on
empirical eigenfunctions, is reasonably insensitive to
the geographically local errors associated with raw data
quality and subjective analysis.

Before analysis began, the Namias data sets were
further averaged onto a grid with 5° latitude spacing
and 10° longitude spacing. In cases when one SST
datum was missing the available datum was used as
the average; there remained occasional 5°X10° regions
of missing data in the SST fields. The 5°X10° grids of
SST and SLP data are shown in Fig. 13.

APPENDIX B
Empirical Orthogonal Functions

The purpose of this appendix is to review those
properties of empirical eigenfunctions which make them
useful in analyzing large data sets. The discussion
proceeds in the context of a time series of maps of some
scalar variable ¢. Each map consists of the value
¢ (x,f) at N positions #, and there are T such maps,
each for a distinct time ¢. In the discussion the mean
(), analogous to the statistical mean, is defined as

and the inner product, denoted by a dot, is defined by

N
f'g=§=:lf(x)g(x)-

The discussion centers around representing the data
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in terms of orthogonal functions according to
o) =2 au () fula),

where
£ fn="00m.

Specifically, the orthogonal function representation
involves using for the functions {f.} the “empirical
eigenfunctions” {v,} which are the eigenvectors of

the matrix
Clx,y) = (o, ()

according to

C-v.=\nVa, Va-v,=1

The orthogonality of these functions is easily shown.
By convention the {v.} are ordered so that N\,2>Xuy1.
The fact that C is the sum of inner products insures
that it is a non-negative matrix so that all X, 2> 0.

The principal virtues of the empirical eigenfunctions
are (1) they provide the most efficient method of
compressing data, (2) they may be regarded as un-
correlated modes of variability of the field, and (3)
they simplify understanding the procedures of minimum
mean square error estimation. These points are con-
sidered in sequence below.

The empirical functions are the most efficient
representation of the data in the sense that, for a
fixed number of functions M <N, no approximate
representation

M
é(x)= 2 an()fal)

can produce a lower mean square error
E=([6—~$1[6-$)
than is obtained using f, =v,. Elementary least-squares
procedures show that, for a given set {f,}, E is min-
imized by taking-
e () =) 1,

which is independent of M, and that the minimum is

M
E=(¢-9)— 2 1,-C-fa.

n=1

The point of interest here is that the error E can take
on no smaller value than that obtained when f,=v,.
To see this, note that because the {v,} form a complete
set any f, can be represented as

N
in =Z YmnVm,
m

where, according to the orthogonality of the {f.} and
the {va.},

N N

Z 'Ynm'Ynl:Z 7mn71n=6ml-
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Also note that any orthogonal set of functions generated
by linear combination of the M f, functions

M 2
fn, = Z 'Ynmfm
m

leads to the same mean square error as the original
f. since

M z ’
Z 'Ynm’Ynl=5ml,
and therefore
M M MM s M
£ CE' =3 yundn C-fya=> f,-C-1,.
n=1 n m 1 n

It follows then that every set {f.’} of M functions is
associated with a special set {f»} with yam=28,mI'» for
nm<M and both have the same minimum mean
square error

E=(4-4)-

Mx

N N
Z Z ‘Ynl’Ynmvl'C'vm
1 m=1 l=1

w

= (d’ ¢>-§ [Fnz)\n+ Z ‘Ynmz)\m:l-

n=1 m=M+1

Noting the descending magnitudes of the {A\} and that

N
rj=1-—- Z Yamy
m=M+1

it is seen that

M N
E? (d’d’)—z |:>\n+(>\M+1_>\n) Z ‘Ynmzj
n=1 m=M+1

M

Clearly, this overall minimum mean square error is
achieved by taking f,=v,, in which case I',=1 and
Yam=0 for m > M.

The second point of interest concerning the empirical
eigenfunction representation

¢(x,1) =% an(on (%)

is the conceptual virtue that the functions v, may be
regarded as uncorrelated modes of variability. This
follows immediately from

(@nm)={n 6D 6()) =10 - C-frn=Nrbnm.

Thus it is seen that (@.a=)=0 if #n7“m and that the
eigenvalues )\, are the portion of the overall variance
> 2{¢?(x))associated with the corresponding eigenvector.

It should be pointed out in this respect that empirical
eigenfunction analysis is very similar to the widely
used Fourler analysis of finite length stationary time
series. In fact, if the process is stationary in the variable
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x, so that C(x,y) =C(x—y), then the empirical functions
are trigonometric functions and the eigenvalues are the
conventional Fourier spectral estimates multiplied by
the bandwidth.

One final aspect of empirical eigenfunctions is that
they can simplify understanding the theory of minimum
mean square error estimation. To demonstrate this
feature the specific problem of estimating a signal from
noisy data is considered. The example is, itself, interest-
ing but the purpose here is to illustrate a much more
general procedure. The problem is to make an estimate
é of some signal ¢(x) from noisy data d(x)=¢ (x)+e(x)
when the noise € is uncorrelated between different x
and has uniform variance (€?). According to the Gauss-
Markov theorem the minimum expected mean square
error is achieved by the estimator

(@) =2 T (d(y)d(2)) {d(@)e(x))d (),

where (dd)™! is the inverse of the data-data covariance
matrix and {d¢) is the covariance of data and signal.
The sum over x of the minimum mean square error

((@p—9)?) is
T (@)~ X X (p@)d3Nd(y)d(2)) " Hd(2)$ (x)).

In the case of interest here (d(x)¢(y))={(p(x)d(y))
since the noise is uncorrelated with the signal.

The virtue of empirical eigenfunctions in examining
minimum mean square error estimators is that the
covariances are conveniently expanded in terms of
these functions and this simplifies examination of the
performance of the estimator. Specifically,

(@@)()) =2 Mefr(®)f(y),
@@ =2 M7 fu () fu (),

and since
(d(x)d(y))= (=) () +()ézy,
@@d) =2 (NI fu(®) fulp).

Substituting these and taking account of the orthgonal-
ity of the {f.} gives a much simplified result for the
error introduced by the noise, namely
An?
Z (@) =@ ) =2 hm———
z n )\n+<€2>

In a similar manner it can be shown that the mean
square error associated with estimating ¢., the ampli-
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tude of the eigenvector f, in the signal, is

2
n

>\n+<e2).

This provides one @ priori criterion for determining
how many eigenfunctions should be used to represent
a data set; when the variance (@.2)=NM\, approaches the
noise variance the estimates of the amplitude become
unreliable and the function may be deleted without
seriously deteriorating the representation of the signal,

The examples considered above are far from exhaus-
tive and, following similar procedures, it is possible to
examine many others including signal extraction from
data with spatially correlated noise, estimation of
interpolated values to fill in missing data, and statistical
extrapolation or prediction. In particular, the discussion
in Section 2 is greatly simplified by the use of empirical
functions to represent the prediction data.

(I:tl,, —‘dn:|2> =An—
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