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ABSTRACT

A Fourier method of filtering digital data called Lanczos filtering is described. Its principal feature
is the use of “sigma factors” which significantly reduce the amplitude of the Gibbs oscillation. A pair
of graphs is developed that can be used to determine filter response quality given the number of weights
and the value of the cutoff frequency, the only two inputs required by the method. Examples of response
functions in one and two dimensions are given and comparisons are made with response functions from
other filters. The simplicity of calculating the weights and the adequate response make Lanczos filtering

an attractive filtering method.

1. Introduction

The general purpose of filtering time series is to
predictably alter the Fourier amplitudes that describe
the series. This is accomplished by modifying a given
data sequence with a set of weights, called the filter
weight function, to produce a new data sequence.
The filter weight function is related to the variation
with frequency of the ratio of the Fourier amplitude
of the modified data sequence to that of the given
data sequence. The latter function is called the filter
response function.

In this paper the filter response function is ex-
pressed as an infinite Fourier series so that the weights
become the Fourier coefficients. In practice, a finite
or truncated Fourier series is used, with the result
that if a response function with a step change in
response were desired, the computed response func-
tion would exhibit an oscillation called the Gibbs
phenomenon. The fewer the number of weights the
larger the oscillation. Lanczos (1956, p. 219) showed
that the error in a truncated Fourier series has the
form of a ‘“modulated carrier wave.” The carrier
frequency is equal to the frequency of the first term
neglected and its amplitude contributes significantly
to the amplitude of the Gibbs oscillation. Therefore,
as Lanczos proposed, one should filter out the carrier
frequency. This can be done conveniently by con-
volving a rectangular function, whose width is the
period (in the frequency domain) of the carrier wave,
with the desired response function. The Fourier
coefficients for the smoothed response function are
determined by multiplying the original weight func-
tion by a function that Lanczos called the “sigma
factor.” Because of the key role that Lanczos played
in the development of this method of filtering it is
called Lanczos filtering,
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The objectives of this paper are to demonstrate
the simplicity of Lanczos filtering, to develop graphs
that can be used to predict the main characteristics
of the response function, to compare Lanczos response
functions to those from other types of fiiters, and to
extend the analysis to two dimensions,

2. Mathematical formulation

Digital filtering involves transforming an input data
sequence x;, where ¢ is time, into an output data
sequence y; using the linear relationship

Y= i Wik, 0))

kem—w0

in which the w, are suitably chosen weights. The
effect of filtering the data is best observed in the
frequency domain. The relationship between the input
and output Fourier amplitude density functions X(f)
and Y (f), where f is frequency, is obtained by taking
the Fourier transform of (1). The result is [see a text
on linear systems analysis, e.g., Jenkins and Watts

(1968)]
Y(f)=R(f)-X(f), (2)

where R(f) is the frequency response function. The
weight function and response function comprise a
Fourier series transform pair such that

RN= T wiesplizefia), @
SN
W =— R(f) exp(—i2x fRA)df,
NJ—yn
kE=...,—1,0,1,..., (4)
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Fic. 1. Curve (a) is an ideal low-pass response function with
cutoff frequency f.. Curve (b) is the smoothed ideal response
function given by Eq. (6) and whose transition band is
2Af=2f)v/n.

where A is the sampling interval and f» the Nyquist
frequency with value % cycle per data interval.

In practice, what is done is to first decide on the
form of the response function, then determine the
weight function but limit the number of weights in
consideration of the length of the data sequence, and
finally use (3) to calculate the actual response due
to using a finite number of weights. Since an ideal
filter is being considered, the first step is to decide
the value of the cutoff frequency f., i.e., the frequency
at which the response drops from one to zero as
shown by curve (a) in Fig. 1. If there is a total of
2n—1 weights in the weight function, then, following
Lanczos’ suggestion, in order to suppress the Gibbs
oscillation the ideal response function is convolved
with the rectangular function

/2w, |f1< fu/n
" )_{o, 11> fa/n. ®

The convolution here is the same as averaging so
that the smoothed version of R(f) is

INIn

R(f+v)dv, (6)

—INIn

R(f)=(n/2fn)

as illustrated by curve (b) in Fig. 1.

If R.(f) represents the partial sum of the Fourier
series obtained by replacing the infinite limits in (3)
by the finite limits —(z—1) and (n—1), then the
partial sum of the Fourier series of R(f) can be
written

Rolf)= é_ @y exp (27 fkA)
=we+2 i Wy cos2a fkA, (7)
k=1

where, by analogy with (4),

1 v
R(f) exp(—i2x fkA)df. )]

CLAUDE E. DUCHON

1017

Substituting (6) into (8) and recognizing that R(f)
is periodic results in

sin2rk fnA/n
Wp=wWp————,
2nkfnA/n

which for unit sampling interval becomes

sin2w f.k sinwk/n

Wp=— y
k wk/n

50, ..,n (9

k=—mn, ..

Thus, it can be seen that the truncated weight func-
tion for the smoothed response is the product of that
for the ideal filter and a sinX/X term denoted by o
and called the “sigma factor” by Lanczos.

Now in (7) the logical limits of the summation
would have been —(#—1) and (z—1) in parallel
with those for R,(f). However, from (9) it can be
seen that w..=0, so that for convenience —# and =
were used. Consequently, if from data length con-
siderations the number of weights is constrained to
2p4-1, it will be advantageous to let n=p+41.

Before proceeding it is possible to anticipate a gen-
eral feature of the Lanczos response function by re-
calling a property of the Gibbs oscillation. Even as
the number of terms in the Fourier series representa-
tion of a step function becomes very large, its am-
plitude has a lower bound of 99, (Hsu, 1970). The
Lanczos filter smooths the discontinuity (as in Fig. 1)
with the consequence that the above property is again
present except that the amplitude of the Gibbs oscil-
lation is significantly reduced.
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Frc. 2. Curve (a) is an ideal low-pass response function.
Curve (b) is the observed response function using 21 weights.
Curve (c) is the result of Lanczos filtering wherein the weight
function is multiplied by a sigma factor. The other symbols
are defined in the text.
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Fic. 3. The magnitudes of the maximum positive Gibbs
oscillation (G;) and left bandwidth ratio (Afr/Af) as a func-
tion of the number of weights and cutoff frequency for Lanczos
filtering. In the G- (negative) region the response function
never passes through zero.

3. Results

a. Low-pass filtering

Curve (a) in Fig. 2 is an ideal response function
in which the cutoff frequency f. is 0.2 cycles per data
interval (from this point on all frequencies will have
these same units so that only the numerical value
will be given). Curve (b) is the response function
computed from (3) for 2n—1=19 weights whose
values were computed from (4) with integral limits
—0.2, 0.2, The Gibbs phenomenon is seen to be quite
pronounced. Curve (c) is the response function com-
puted from (7) in which the weights are obtained
by multiplying the weight function above by the
sigma factor. For curve (c) there are 2n+1=21
weights but from Eq. (9) the two end weights are zero.
The advantage of using the sigma factor is clearly
evident in the reduced Gibbs phenomenon. At the
same time the width of the transition band, i.e., the
frequency interval between the nearest unit and zero
responses about f., increases. The wider band in
curve (c) corresponds to the transition band 2Af in
Fig. 1. One can anticipate that the use of a sigma
factor to a power greater than 1 will result in further
suppression of the Gibbs phenomenon coincident with
an even wider transition band.

The properties of an observed Lanczos response
function are completely determined by the ideal
cutoff frequency f. and the number of weights 2n+1
and can be presented graphically. The properties of
interest are as follows:

1) G(G-): the maximum value of the Gibbs oscil-

lation for frequencies lower (higher) than f. (see
Fig. 2).

2) Afi/Af(Afr/Af): the ratio of the bandwidth
between f. and the frequency of the nearest unit
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(zero) response of the observed response function to
that of the smoothed response function (see Figs. 2
and 1).

Fig. 3 shows the response properties for frequencies
< fe. These results were obtained from computations
of a dense matrix of cutoff frequencies and numbers
of weights. There are four distinguishable regions:

1) Between the inner solid curve and the dashed
curve to the right the bandwidth ratio is 1.3 and
maximum Gibbs oscillation is 0.01 (a 19, error).

2) Between the inner and outer solid curves and
the dashed curve to the right the bandwidth ratio
varies from 1.2-2.0, the latter value occurring co-
incidentally with the outer solid curve. The maximum
Gibbs oscillation varies from 0-0.02 except within
the curved wedge-shaped region where it is 0.03. The
zero value coincides with the outer solid curve.

3) Within the outer solid curve, the dashed line
and the left coordinate axis the Gibbs oscillation
is zero. The response is unity at the origin and de-
creases with increasing frequency.

4) Outside the dashed curve (in Fig. 4, also) the
response function never passes through zero response.
The use of a response function for a combination of
number of weights and cutoff frequency that is in
this region is not recommended.

Fig. 4 shows the response characteristics for fre-
quencies higher than f.. The regions. of interest are
as follows. '

1) Within the inner curve the bandwidth ratio
is 1.3 and the maximum Gibbs oscillation is 0.01
(a 19, error).

2) In the area bounded by the inner solid curve,
the outer solid curve on the left and the dashed curve
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Fic. 4. The magnitudes of the maximum negative Gibbs
oscillation (G-) and right bandwidth ratio (Afz/Af) as a func-
tion of the number of weights and cutoff frequency for Lanczos
filtering. In the G- (negative) region the response function
never passes through zero.
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on the right beginning at f.=0.2, the bandwidth ratio
varies from 1.2-1.4 and the maximum Gibbs oscil-
lation from 0-0.02;, except in the crescent-shaped
region where the latter quantity is 0.03. The zero
value of the Gibbs oscillation coincides with the
dashed curve. :

3) In the remaining area above the dashed curve
the maximum Gibbs oscillation is greater than 0.03
and the bandwidth ratio can be greater than 1.4 so
that the use of a response function for a combination
of number of weights and cutoff frequency that is in
the region is not recommended.

As an illustration of the application of these graphs
we consider the problem of assessing how the response
function changes when the number of weights varies
and f.=0.15. With 31 weights the maximum Gibbs
oscillation will be 0.01 and the bandwidth ratio will
be 1.3. Increasing the number of weights to 51 will
not change appreciably either the magnitude of the
Gibbs oscillation or the bandwidth ratios. On the
other hand, the width of the transition band Af;.+ Afg
decreases since Af=1/(2n).

If between 15 and 31 weights are chosen G, lies
between 0 and 0.02 and Af./Af between 1.2 and 2.0,
the exact values determined by the actual number of
weights. There is no change in G_ or Afg/Af until
the number of weights is less than 11. From 5-15
weights G, =0 and Af.=0.15. From 5-9 weights G_
lies between zero and 0.03, and Afz/Af between 1.2
and 1.4.

In general, there is comparatively little change in
the magnitude of either the Gibbs oscillations or the
bandwidth ratios for values of 2zn+1 and f, above
the dashed lines. The most dramatic change is in
the transition bandwidth Afg+ AfL, which is approxi-
mately inversely proportional to #. Also, Figs. 3
and 4 can be used to reasonably infer the response
properties when the total number of weights exceed 51.

b. High-pass filtering

The response function for a high-pass filter can be
obtained from that for a low-pass filter [Eq. (7)] by
subtracting the latter from 1 to get

Ru(f) =wo+2 z W & cos2 fk,

k=1

(10)

where W, =1—1w, and W}, = — ;.

Recognizing that (i) AfL(Afg) is now the bandwidth
between f. and the frequency of the nearest zero
(unit) response, (ii) G,(G_) is the maximum value
of the Gibbs oscillation below zero (above unit) re-
sponse, and (iii) if G- is negative the observed re-
sponse curve never passes through unit response,
then Figs. 3 and 4 can be applied directly to high-
pass filters.
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F1c. 5. The minimum number of weights [see Eq. (14)]
required to achieve unit response for a Lanczos band-pass filter
given the cutoff frequencies f. and fes.

c. Band-pass filtering

The ideal band-pass filter would show zero response
from the frequency origin to the cut-in frequency fe,
unit response from f.; to the cut-out frequency f.s,
and zero response from f.s to the Nyquist frequency.
From Eq. (8) the smoothed weights would become

<sin21r feok  sin2wfoik
W= -

>¢r, k=n,...,0,...n (11)
wk wk

Eq. (11) represents the difference in weight functions
for two low-pass filters, with cutoffs f., and f.;. With
this view in mind the shape of the response function
can be anticipated by recalling the shapes of low-pass
and high-pass filters. Also, if the criterion

fcz_AfL‘lchl_*_Ale, (12)

where the A terms have meanings similar to those
given earlier, is applied to the two low-pass filters
then the response at the center of the pass-band will
be very close to 1. If the criterion is not met, then
the response at the center of the pass-band will be
attenuated. Of course, it is desirable to satisfy this
criterion. This can be done using the method de-
scribed below, the result of which relates the number
of weights commen to both filters to the difference
between the given cutoff frequencies, i.e., the ideal
pass band. From Eq. (5) and the definitions given in
Section 3a,

Asz =K2Af=K2/2n,
Ale = KlAf= K1/2n.
Their sum is
Af Lot Afpr= (K 1+ Ks)/2n.

Figs. 3 and 4 each show a large region in which
K,=K;=1.3. For this condition,

Asz+ Af31=1.3/ﬂ. (13)
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Fic. 6. Lanczos band-pass filters showing the effects on re-

sponse of using less than and more than the number of weights

given in Fig. 5.

Substituting (12) into (13) yields

n?l.s/(fd_fcl); (14)

the equality portion of which is plotted in Fig. 5.
For example, if f,2=0.3, fo1=0.2 then the minimum
total number of weights required to achieve unit
response at the band center is 27. The observed re-
sponse function is shown in Fig. 6 along with those
for 2n+1=11 and 43. The response at the band
center (f=0.25) for 27 weights is 0.995 and for 43
weights is 1.005. That the maximum amplitude in
the pass-band is less than 1 when the number of
weights is fewer than 27 is due to the fact that the
two terms on the right side of (11) are individually
normalized when computing the weight function (in
order to insure zero response at the frequency origin).

d. Comparison with other filters

Of course, there are a plethora of digital filters
that have been designed and used over the years—
a number of them recently discussed by Hamming
(1977). In order that a comparison between a Lanczos
filter and any other filter be fair there need be only
the same number of weights in each. Then the only
reason the response functions can differ is the values
of the weights.

A commonly used filter is the running mean. As
this represents a filter with “poor” response, in con-
trast, the von Hann or Hanning filter is representative
of a filter with ‘‘good” response. The weight and
response functions for the von Hann filter are, re-
spectively (Hamming, 1977)

14-coswk/n .
—, |k|<n
Wr= 2

0, |k|2n
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sin2wn fI‘ sinrf \*7™!
R(f)= 1—
) 2 tanr fL <simr/2n>] -

and the response function for the running mean is
(Burroughs, 1978)

R(f)=sin(mnf)/m sinxf,

where m is the total number (odd) of weights.

The comparison among the above response functions
and the response function for Lanczos filtering [Eq. (7)]
is shown in Fig. 7 where each filter has 11 nonzero
weights (so m=11 and »=6) and the cutoff frequency
for the Lanczos filter is 0.065. The figure shows that
the running mean has the first zero crossing (or tangent)
at f=0.09 but that it has much larger side lobes than
the other two response functions. Clearly, one pays
a heavy price in the frequency domain for its sim-
plicity in the time domain. In contrast, there are
only minor differences between the von Hann and
Lanczos responses. The advantage of the Lanczos
filter over the von Hann filter is that the cutoff fre-
quency can be controlled independently of the number
of weights (Figs. 3 and 4).

As a second example,. we consider a comparison
between a Craddock band-pass filter and a Lanczos
band-pass filter. The development and application of
the former filter is discussed by Craddock (1969,
1965). In brief, “‘elementary” filters whose response
functions are determined exactly by the number of
weights are combined to produce a desired response
function. It is in the latter procedure that considerable
effort can be expended. The values of the 21-weight
Craddock filter chosen for comparison are given in
a paper by Carrea (1978). The response function is
given by the thin curve in Fig. 8 and has a peak
value of 1.006 at a frequency of 0.07. The thick curve
is the Lanczos response function and was obtained

(16)
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Fic. 7. Comparison among the rectangular (moving average),
von Hann and Lanczos filtering in which each uses 11 nonzero
weights.
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as follows. The difference between the cutoff fre-
quencies fo1—f.2 was computed from (14) with n=11
(21 nonzero weights). To get the cutoff frequencies
fe1 and feo when the band-pass filter has unit response
at a single frequency we let (foa—f2)/2=0.06=Af1,
=Afr1. Then, since both sides of (12) equal 0.07,
the desired central frequency, f.;=0.01 and f.2=0.13.
Using (11) and (7), the resulting Lanczos filter has
a peak response of 0.998 at a frequency of 0.08. As
seen in Fig. 8 the response functions are quite similar
except that the Lanczos filter has a wider passband
and smaller side lobes. This example demonstrates
that the Lanczos approach to the design of a band-
pass filter is quite easy and yields good response
characteristics. ’

4. Two-dimensional filtering

a. Mathematical formulation

Based on the formulation for Lanczos smoothing
derived in Section 2, Justice (1976) has developed a
generalization to N dimensions. From this general-
ization or by analogy with (7), the response function
for two dimensions becomes

- nr ny
anmu(fhfu)z Z Z Wiz ky

kz=—nz ky=—ny
Xexp[i2x (fokz+ fuky)],

where the smoothed weight function is, by analogy
with (9),

an

sinwk,/n, sinwk,/n,

Wy, ky™ Whe by

kot Thy/ny
= Wy, kyT 20 y. (18)
Iotr
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— CRADDOCK
or — LANCZOS
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Fic. 8. Comparison between Craddock and Lanczos band-pass

filtering in which each uses 21 nonzero weights.
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Fic. 9. Response function for a two-dimensional Lanczos
filter in which the cutoff frequencies are 0.2 and 0.3 and each
direction has 21 weights.

As before, frequency is in cycles per data interval
and the data interval is unit length. In accord with
previous notation k., #,, f;, 0, and &, n,, f,, o, de-
note the weight number, number of weights, frequency
and sigma factor in the orthogonal x and y directions,
respectively.

The general relationship between the weight func-
tion and response function can be written

w(xy) = [ / " RUt)

Xexpl—i2w(fox+ fuy)1df.dfy. (19)

This is analogous to (4) except that for convenience
in what is to follow the weight numbers have been
expressed as continuous variables.

As in Section 2, we let R(f.,f,) represent the ideal
response function which then will have unit value
between the cutoff frequencies in the x and y direc-
tions, i.e., from —f., to f., and from —f,, to f,, and
has the shape of an elliptic cylinder.

In order to integrate (19) the following changes of
variable are made:

fz,=fz/f0m

2 =f, x,

Jo=tolfey
Y =fe, .

The former change of variable transforms the
elliptic cylinder into a circular cylinder. As shown
by Goodman (1968) the next step is to place the
primed variables in cylindrical coordinates and, then,
because of the circular symmetry the integration is
straightforward. The result of the integration (see
previous reference for details) is

W(%,y) =feof e, )1 (2100) /0,

where u=(f22*+f29*)* and J, is a Bessel function
of the first kind, order one. After reverting back to

(20)
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weight numbers where
k.=0,1,2,..., 1,
k,=0,1,2, ..., n,,

x=k,Ax,
y=ky4y,
the weight function becomes

Wigyk, =feoS e, J1(2m2) /2,

z=(fLlt 1o k)t

By specifying the two cutoff frequencies f., and f.,
and the number of weights #, and »,, the values of
the weights and the frequency response function for
two-dimensional Lanczos filtering can be determined.

(21)
where

b. Example

Fig. 9 shows the response function for a two-
dimensional low-pass Lanczos filter in which f,,=0.2,
fe,=0.3, 2n,+1=21, and 2n,+1=21. The magnitude
of the Gibbs oscillations and the bandwidth ratios
along the RESPONSE-f, and RESPONSE-f, planes
can be determined directly from Figs. 3 and 4. The
response function in the RESPONSE-f, plane is the
same as curve (c) in Fig. 2. The values 0.22 and 0.13,
and 0.37 and 0.26 are the frequencies of unit response
and zero response, respectively, nearest the cutoff
frequencies.

5. Summary

A Fourier method of filtering digital data called
Lanczos filtering is presented. The principal feature
of the method is the use of “sigma factors” which
significantly reduces the amplitude of the Gibbs oscil-
lation. A pair of graphs has been designed that show
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the magnitude of the Gibbs oscillation and the width
of the pass band after Lanczos filtering, given the
number of filter weights and the cutoff frequency,
the only two inputs required. For low-pass filtering
the weight function is given by (9) and the response
function by (7). The weight function is easily modified
to get high-pass and band-pass filtering.

~The methodology is extended to two dimensions
and a computer program is available from the author
to calculate the weight function (21) and response
function (17).

Acknowledgments. The author wishes to thank Dr.
J. S. Goerss for his interest in and critical comments
on this paper. This research was jointly supported
by the Global Atmospheric Research Program, Divi-
sion of Atmospheric Sciences, National Science Foun-
dation and the GATE Project Office, National Oceanic
and Atmospheric Administration.

REFERENCES

Burroughs, W. J., 1978: On running means and meteorological
cycles. Weather, 33, 101-109.

Carrea, G., 1978: Sun-weather relationships at Oxford. Weather,
33, 179-185.

Craddock, J. M., 1965: The analysis of meteorological time
series for use in forecasting. The Statistician, 15, 167-190.

——, 1969: Statistics in the Computer Age. American Elsevier,
214 pp.

Goodman, J. W., 1968: Introduction to Fourier Optics: McGraw-
Hill, 287 pp.

Hamming, R. W., 1977: Digital Filters. Prentice-Hall, 226 pp.

Hsu, H. P., 1970: Fourier Analysis. Simon and Shuster, 274 pp.

Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis.
Holden-Day, 525 pp.

Justice, J. H., 1976: Lanczos-type smoothing in N-dimensions.
Division of Math. Sci. paper, University of Tulsa, 24 pp.

Lanczos, C., 1956: Applied Analysis. Prentice-Hall, 539 pp.



