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ABSTRACT

£ "statistical fo;ecasting" formula may be establisbed by
determining, from a giﬁen sample of daté,vthe lihéar combination of a
set of predictors which forms the best approximétion to a given pfedic—
tand The dynam1ca1 basis for prediction by such formulas is discussed.

Statistical formulas have a greater probab111ty of verifylng
well, when applied to new data, if the ‘number of predictors is small,
relative to the nﬁmber of independent observatioﬁs of each predictor.

When fhe desired preﬁictors consist of a continuous fieldxof
gdﬁe physical quantity, the field‘may be analyzed iptb a sum of ortho-
gonal functions of space ( Y's ), whose coefficients { Q's ) are ortho—
gonal functions of time. A small numbef of Q's with\large variances
may then be used as prédiétors. Empirical orthogonal functions ( Y's and

s ) ﬁay alsd be determined when the data are heterogeneous. The proce-

dure for determining..Y's and Q:s is routine, and has been programmed
for automatic computatién. |

The sea-level pressure field over the Uhlted States and southerﬂ
Canada, as represented by observations at 64 stations, has been analyzed
into Y' and Q's . Eight Y's and Q's specify 91 per cent of the
variance of the pressure fleld In predlctlng the pressure f1e1d from the
pressure field on the previous day, nothing appears to be gained by using

more than a small number of Q's as predictors or predictands.

The possible use of empirical orthogonal functions in nonlinear

=

statistical forecasting, and in dynamic forecasting, is discussed.
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“EMPIRICAL ORTHOGONAL FUNCTIONS AND STATISTICAL WEATHER PREDICTION

~ 77377 The dynamical basis for statisiical weather prediction

Let a set of obéerved valmes of a predictand and of one or
more predlctors be glven. One can then usually determlne, from these
data, the llnear combination of the predictors whlch forms the best
approx1mat10n to the predlctam; 1n the least-squares sense. Durlng

the past few years, meteorologists have become increasingly interested

in the problem of predicting the weather by means of suCh approximations.

-

This method of pred1ct10n is popularly called statlstlcal forecastlngL

_notwithstanding the many other statlst1cal methods which. have long

been used. Among the first systematlc studies in statistical fore-

" casting of this sort were those of Wadsworth and Bryan {11; 103. Sub-

sequently, results obtained by several groups have been presented;

these groups have included the Geophysics Research Directorate of the

Air Force Cambridge Research Center E12; 13; 14],_the Travelers Weather

Research Center [7], and the'Synoptic Climatology Project at M,I.T.

~

{s5; 6; 8; 9].

For the most part these studies have followed by several

years the first successful experiments in dynamical forecasting.
Studies of the latter sort are now abundant in the literature (see
(4D).

To some meteorologists the statistieal method has appeared

to be the antithesis of the dynamical metho&;'since,'although both



methods are objective, the former seems to disregérd the dynamics of
the atmosphere, while the ;gtter seems to disregard the statistics;

It should be mentioned, then, that the dynaﬁic method as practiced is
not entifely free of empiricél relatioﬁs{ for the dynémic eQuafioﬁs
are not ordinarily integraied in their priﬁitive form, and the modifi-
cations made, such as the geostrophié apprdkimatioh and the neglect

of the vertically integrated divergence, afe suggested by the observed
behavior of the atmoséhere rather than by pure dynamic theory. Like~
wise, in statistical studies the choice of ﬁredictors is often based -

upon dynamic considerations.
Of more interest at present, however, is the dependence of
the success of empirical methods upon dynamics. If atmospheric varia-

tions were mere chaotic fluctuations, they could hardly be predicted

by empirical formulas. Their predictability results because they are

‘governed by physical laws which presumably do not change with time.

These laws tell us that the pasé and>future weather are in some way
related.

Recently Wiener [15] has shown'that if a statistically
stationary system is detefministic, in fﬁe“sense thaf its future state
is exactly determined from its present by a>goverﬂing dynamics, and
if in addition the entire past history of the system is known,.the
future of the system may be prediéted'exactly by linear regression

equations, even if the nature of the dynamics is not known. It is of

- interest to examine the pfedictability of the weather in the light of

this result,



First, the atmosphere by itself is not:deterministie, since fu-
ture influences of the earth upon the atmosphere depend not merely upon
the future state of the atmosphere but also upon that of the earth.
Even the earth—atmosphere system is not exactly determlnlstlc if the
energy received by the sun may undergo s1gn1f1c;nt unpredlctable varia-
tlons. 1f these variations are in turn governed by dynamic processes
w1th1n the sun, the sun—earth—atmosphere system- may be nearly deter-
ministic. In this case atmospher;c observations may be treated as obser-—
vations of a portion of the sun—eart.h—-atmosphere system.

Secondly, in our problem the infinite past history required
for‘perfect prediction is replaced by a history_ofvonly some fifty
_years for most sea—level observations, and considerably less for most
upper-air observations. Moreover these observations cannot be regarded
as completeiy accurate. It is jmportant to know whether, in the absence
of infinite and exact past history, good ébut not perfect) linear pre-
diction is better aided by considerable knowledge of the fer past, or
by intepsive knowledge of the near past. In the former ease Wiener's
result would be of doubtful pracpical value to the forecaster; in the
latter case it would imply tﬁat ﬁseful empirica} relations are to be
found. .

Regardless of whether far-past or near-pest history is more
desirable, the dynamic equations suggest that near-past history alone
may be of considerable‘use, Alrhough we cannot integrate the gemeral

dynamic equations in finite form, we know that the integral of these

equations expresses the future state of the é%mosphere'as a compli-
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\
cated nonlinear function of the present state and of the intervening
external influences. Some of the siﬁplified dynamic equations express
the pressure and temperature fields is the very near future as fairly
simple quadratic functions of the presenthstate. It seems reasonable
that these same nonlinear functions are at ieasf bartly reflected in
the behavior of the atmosphere in tﬁe very.near past., In éddition, some
of the information which is lost by sbserving only cgrtain features or
certain portions of the atmosphere, e.g., ;bserving sea~level pressure
only, may be reflected in the immediate past bshavior of the observed
features within the observed bortions, Standard methods oftlinear pre-
diction assure us that this information, to the extent that it is con-
tained implicitly in the near-past beﬂ;vior of the atmosphere, may be
used to good advantage,

It would therefore appear-that the more predistable the
atmosphere may be by dynamical methods, the more predictable it is
likely to be by pufely embirical methods. The dynamlc equations them-

selves justify attempts to predlct by emplrlcal methods, even when

the data are restricted in extent and in kind.

2, Shortcomings of the statistical forecasting method

It is a stralghtforward process to determine the "best"'
representation of a predlctand as a linear comblnatlon of a set o£ :
predictors, by the method of least Ssquares. Let the predictand _be f

- l

x(t) , and let the M predictors be pl(t) -—-,pM(t) , where t

- 4 -
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_____may be time, or any other parameter distinguishing one observation

~from another. For any choice‘of M+ 1 cogstants co,———,cM , we may
then let : : *~.A M
x(t) = c4+ Zcmgm(t) + r(t) . (1)
m=1

Equation (1) is a predictién formula for x(t) ; the first two terms
‘on tﬁe right formvthe predicted value of x(t) , while the final term
r(t) , which depénds upon fhéﬁchoice of constants, is the residual or
error in prediéting x(t) . The problem at hand is that of déterﬁining
fhe set of' M + 1 constants Ch which minimizes the’mgan value of rz .
| To\accomplish our task we choose a sample consisting of N
M"MW“oﬁservations of each quantity. We then minimizg ;§ . Hefe and subse-
quently, a bar ('—— ) denotes the mean value of a quantity over the N
_observations comprising tye sample.,

By letting po(t)

1 , we may write (1) in the more concise

form

M,
x(t) = zcmpm(t) + r(t) , 2)
m=0
. so that T
_ o M - M
2 2 o | —
r¢ = x" - ZEcm p X + Z ¢ €, PuPn - 3) |
* m=0 m, n=0

2

AN

In order that r> be minimized, the derivative O rz/acm must -

vanish for all values of m , SO that

1)



}: PP c = pmx ' for m = 0,—~~,M ., (4)

Equations (4) are a set of M + 1 equations in the M + 1 unknowns

£

cn "« They may therefore be solved by numerous standard methods;-emong

these, the method of Crout [1] is particularly suitable for both

v

manual and automatic computation,

From (4) and (2) follow the important relations

pr = 0 for m = 0,---,M . )

Conversely, from (5) and (2), equations (4) follow, Hence, either

equations (5) alone or equations (4) alone form a necessary and suffi-

clent condition that r2 be minimized, and that (1) or (2) be the
"best" prediction formula for x(t) .

It is often more con&enient to use a predict&on formula which
refers to departures of x and vpm' from their mean values., From (5)' R

it follows that ; = 0 , Applying a bar to eaeh term in (1) and sub-

tracting the result from (1), we find that

M

x*(t) = zilcmp;(t) + r(t) s : (6)

m=1

-

N *
where a star ( )} denotes the departure of a quantlty from its
arlthmetlc mean value over the sample.
4

Because of the formal analogy between (6) and (2), relations

analogous to (4) and (5) also hold. Thus the sets of equations

-~
It
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- PPy Sn © Py or m = 5,770 2
: ‘n=1
~and ! . : )
; )
pr = 0 for m=1,---,M , (8)

S , .

are each necessary and sufficient conditions that r2 be minimized. In
practice the M equations (7) are often used instead of the M + 1
equations (4) to determine the constants c, .

From (6) and (8) it follows that

_ . TE ¥
2 *2 X |
R X | )
=1 -

The first term on the right is simply thé variance of the predictand,

while the term on the left is the variance of the error, oOr the unex-
. .
plained variance. The final term, in addition to being the variance

of the predicted value, is therefore the amount of the variance of x
. *
Yexplained” by the predictors, and the ratio of this term to X 2 is

the reduction of variance, a fraction often used as a measure of the

goodness of the prediction.

* %X * X
‘The quantities pmpn and pmx in (7) are covariances.with

respect to time; hﬁreoéer, they are sample covariances rather than
population covariances. It is a familiar observation that éovarianceq
tend to differ considerably from one sample to another, and hence from
samplé fo populatibn. It follows that the coefficients cn also depend

upon the particular sample, Hence the best prediction formula, as
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determined by one sample, is in general not the best formula for the

-

whole population,

Indeed; it appears'toat when meteorological quantities are
involved, there is no such thing as a best prediction formula, The best
formula for the entire pooulation might be defined as the limit of the
best formula for a sample, as the size of the sample approaches infinity.
Such a limit, however does not necessarily ex1st and even if it does,
it cannot be found because of lack of data, On the other hand, what we
usually wish is the best formula not for the entire population, but for
some unspecified but not too extensive portion of the future. Certainly
we do notvﬁish a formula which will yield good day-to-day predictions
during a future ice age, if the formula, in order to do so, must sacri-
fice some of its effectiveness during the nextvfew deoades. If two
formulae give nearly equal reductions of variance within a sample con-
sisting of recent past data, we cannot say, with a very high probability
of being right, which of these will give the better prediction dur1ng
the near future,

This state of affairs should not drscourage us, because even
if we canpot identify a best predictlon foroula;.we can, with a.highlg,lm
probability of being right, distinguish between a good formula and a
‘poor formula. We should strive to obtain a good formula, and, having-
done so, be temporarilf satisfied with if, since we-caonof pick out.

the best formula from among the many good ones. Further improvements

may be possible when more data are accumulated,.

As a corollary, it would appear that aoy efforts to insure

~ 8-
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that a formula is the best, rather than merely good, for a particular

sample, are probably wasted. Such procedures as rounding off the data
to two significant figures before undertaking manual computations are
therefore frequently in order; in the case of automatic computation,

this procedure may‘not result in any saving of effort.

oo ... The most obvious danger in sampling is that a formula which

appears good for one sample may be poor for the population. A less
obvious but equally serioug danger is that a formula which is good for
tbg population may be overlooked not because it is poor for the sample,
but merely because it is not the best for the sample. We cannot com-
pletely‘escape these dangers, but we should try to minimize fhe pro—
bability encountering then, |

At first glance it might seemvthét the greater the number of

. ‘predictors, the greatexr the probability of obtaining a good prediction

férmula, and, indeed, this would be so if the sample used in estab-
lishing the formula could consist of the entire population. When the
size of the sample is limited, however, the use of too many predictors
can lead to trouble, Thé-difficulty is that the greater the number of

predictors, the greater the‘probability that some linear combination

‘of these predictors will be highly correlated with the predictand with-

in the sample,'eVen though it may be uncorrelated with the predictand

within the popuiation, Corresponding to this combination there will be
terms in the prediction formula; these teymé will increase the reduc-
tion of variance within the original sample, but will pfobably,increase

the error when the formula is applied to new data.



When formula (6) is applied to a new sample, and the symbol ~

=

is used to denote a mean value over the new sample, the relation

M N
% B\ R T,
r = x c, pox 4+ . ¢Cn PuPp
m=1 m,n=1
, . ’;5
does not reduce to a form analogous to (9). The term x is no longer

~ ' - (3 ) '
the variance of x (unless x = x ), but is the mean-square error in
x before prediction, i.e., the mean-square error which would result

if x were always predicted to equal x (a prediction sometimes called

~2 N
2 . .
"climatology"). The term r is the mean-square error after prediction,
’ s
*2
and the ratio of the remaining terms on the right of (10) to x 3

which replaces the reduction of variance as a measure of the goodness -

of the prediction, may be called the reduction of error. This ratio is
’ ~~

’ *
not the only possible measure; sometimes r2 is compared with x 2
2 o

instead of x .

If we assume that population means do exist, we may let S0

-

and RO' be the reduction of variapce and ihe ratio of the unexplained
to the total variance, within the populaﬁion, so that S0 + RO =1 .

We may also let S' be the'expectéd red;éfion of variance within a
sample by the best formula for the sample, and let ‘S" be the expected -
réduction of error when the best formula for one sample is appligd to
another Sample, Under the‘assumption that the samples afe,random?y

f

chosen, we cap show that apprbximateiy

S'~ 8+ R 1)

~ 0O N-1"0 ?

- 10 -



and

Catt _i ) . '
S" ~ S0 N ¥ l'RO . (12)

. ..Thus a considerable discrepancy is to be expected between the reduction
of variance and the reduction of error. In many sStudies the samples
are not randomly chosen, since serial correlations are present, and the

expected discrepancy is even greater. The derivation of relations (11)

‘and (12)'is presented in the appendix, since it does not seem to be

- -

readily available in a singie paper, although relations (11) and (12)
themselves appear to be well known'among statisticians. In particular,

relation (11) is essentially equivalent to the statement that one should

.divide the sum of squares of the error by the number of degrees of free-
;ﬂ,dém rather than the number of obséfvatigns, to obtain an unbiased mean-
square error. | . , .1
B It is nearly certain, then, that if many studies are performed,
in ﬁhich the number of predictors is a cénsiderable fraction Qf‘th;

number of observations, some of these studies will yield high sample

reductions of variance, -especially if low or moderate reductions are
. - <

present in the population, One is therefore justified‘in regarding with

éome skepticismAany such formula which has not been tested with an
independent sample. Th?re is a high probability that the formula will
fail in this test.

The most obvious way to lessen the dangers inherent in sampling

is to increase the size of the sample, When this is impossible, it is

—————— = m -

imperative that the number>of predictors be restricted. The question of

a suitable method for accomplishing this en& then arises.

- 11 -
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Perhaps the simplest way to restrict the number of~predictofs

=

is to éhoose only a small number in the first place. This was done by
Wadsworth and Bryan [11] in some of the first systematic studies in
statistical weather prediction., The studies gave reductions of variance
of aboﬁt 50 pércent in the 24 hour prediction of daily mean pfessure,
and over 70 pércent in the 24 hour prediction of daily mean témperature,
ét individual stations. In each caée the prediétors consisted of daily
mean pressures or temperatures one, two, or three days previously, at a
small number of nearby stations; Similar reductions of error were found
when the formulas'were applied tq“inéependent samples. Increasing the .
number of predictors did not appear to increasé the reduction of error;

possibly‘for the reasons discusseq in this section.

Sometimes the number of predictors believed to be important

is not sufficiently small. During the course of the Synoptic Climatology

Project at M.I.T. (see Sellers [9]), Malone and'Miller[S; 8] attempte

to

predict the instantaneous sea-level pressure field over the United States
and adjécent regions, using as predictors the same field one day and two
days previously. This field was represented by the pressures at a set of

91 grid points, and the sample consisted of these pressures on each of

\

155 Januafy days. If all availsble pressures on each of two days had been
used as predictors, there would have been 182 predictors, and 155 obser-

vations of eadh, and perfect prediction would have occurred within the
' i

o . ]
sample (the least squares method would not have yielded a unique;for-

mula), while the probability of success with an independent sampke would

have been small,

- 12 -



To av01d this 51tuat10n, Malone and Miller used a method

S ) ¢ e,

;;troduced by Wadsworth C111 (see also CQJ) The 91 pressures for each
-day we;e first represented by their mean and standard deviation, and
| . : .
“the no}malized coefficients (Z's) of 14 Tschebyscheff orthogonal
polynoﬁiais. The numher of prédictors wa; thus reduced to 32, so that
the expected sample reduction of variance would have been 0.22 if ail
the data had been completely 1ndependent
Actually the sample ‘reduction of the total &ariance at the

”66 grid points used for verification was 0.69. From this one might have
estimated a population'reduction of variance of about 6.60, and a
u}eduction of error of about 0.50 upon applying thé-formula to an inde-
» pgpdept’sample. Actual application of the formula to one month of inde-
pendent data &ielded a reduction of error of 0.45. Although this reduc-
tion may not be great enough for practical forecasting, it at least
indicates that the stétis%ical method ﬁay become p¥actica1 when further
refinements are made, 5 _

The representation of 4 map by 16 parameters is fairly satis-
factory when only two maps are to bebﬁsed as predictors, but not s0
;suitablé for a larger number, for example, two maps at each of three
levels, unless the sample sizé caﬁ be increased. Moreover in the study
of Malone and Miller i; appeared that certain Z;s were highly cor-
related with each other, so that redundancy was present in the"repre—‘
sentation. An additional method of representing a map, or a set of maps,

by a small number of quantities is therefore to be desired. A méthqd

of accomplishing this task, and the results which it has yielded, form

- 13 -



the remainder of this study.

=

3. Representation of a set of predictors

One systematic method of reducing the number of predictors
‘at hand, before using them to predict, consists oY determining a smaller
number of quantities, in such a way that the qriginal set of predictors
‘may be approximate& by a set of linear combinations of the new quanti-
ties, and then using the new guantities as predictors. In this section
our problem is that of Aetermining suit;ble new quantities.

Consider a set of M predictors (t),-—,p (1) each
Pl ) ) pm ’

observed at the N times t ,-—,t . Let
1 n

N\ — )
vV = Z 2 , 13)

be the sum of the variances, or total variance, of the predictors. Let

ql(t)——-,qk(t) be any K quantities, where K<M , and let
K e«
* N
Pt =) v (e e ), (19)
k=1 ‘

where; as in (6), the coefficients Yym 2Fe to be chosen to minimize

the value of ri for each m , and hence to minimize the#quantity

M

, | | ) ) M
{ ’ R = Z

=

2, . (15)

[ae}

-14 -



- _which then becomes the total "unexplained" variance of the predictors,

Although R is a minimum with Yéépect to choices of ykm , it still

-...depends upon the choice of the quantities qk . The problem\af hand is

to minimize the ainimum value of

that of choosing the quantities qk

R . The quantity (V - R)/V then becomes the fraction of the total

variance which may be represented by K quantities.

For this pﬁrpose, let

) M
<™
p () = ZYkak(t) , (16)
k=1
\whgge Ykm and Qk(t) satisfy the relations )
M
. ~ _f1 it k=3
‘>_JYkaJ'm = sk,j ’{o it k% j a7
m=1
and
NQQe = akakj ’ (18)
> >
and where a = 841 - o .

\ * %
It will then follow that the quantities Ql,———,Qk , 1f they

.existn satisfy the requirements for the desired functions ql,--—,qk .

Moreover

. . L.
. vV = 1 z a : (19)
’ N k 7
k=1 : '
and .
' K
V-R = 1 Z a (20)
. N k .
k=1

=

A proof of these results is presented in the appendix.

- 15 -



To show that quantities Ykm and Qk(ti) satisfying (16),

(17), and (18) always exisf, and to describe a method for determining
_them, it is convenient to use matrix notation. If P , P , Q9
¥ ’ » . )
and Q are matrices of N rows and M columns whose elements are
X - N Tk )
pm(ti) s pm(ti) s Qk(ti) , and Qk(ti? , and 1f‘ Y is a square
matrix of order M whose elen2nts are ij , the problem consists of

ekpressing P in the form

P = QY , (21)
where
w=1 , @ - » (22)
~and . o

Q Q = D , (23)

where 1 is the identity matrix, D is a matrix whose non-diagonal
elements vanish and whose diagonal elements are arranged in decreasing
order, and a prime (') indicates that the rows and columns of a matrix

have been interchanged. Equations (21), (22), and (23) are identical in

meaning with (16), (17), and (18).

To determine Y and Q , let

A = PP " (24)
}

be the matrix whose elements N pjpk are proportional to the covariances

of the predictors. If (21), (22), and (23) hold, it follows that
Q = PY' . . (28)

and
|

l

YAY' = D . - o  (26)

Conversely, if Y satisfies (22) and (26), then Q as defined by (25)
. ' , i _ :

satisfies (21) and (23). ) ' : f

- 16 -
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.The problem of solving (22) andv(26) for Y and D , given
A , is a classical one. It is.referfed to variously as matrix diago-
nalization, or determination of chéracteristic roots and vectogs (or
lafent roots and vectoré, or eigenvalues and eigenvectors) of a matrix,
‘and may bé solved by numerous methods,. Ajconveniegt méfhod fér both
maﬁual‘and‘automatic computation,voriginally‘used by Jacobi [3], is
described in the appendix.

" Once having found Y , we can determine Q from (25), or

equivalently, determine the functions Qk from the equations

M

—

Q (1) = kampmm . @

m=1

We may then use K functions Q (which we shall call "Q's" ) as

k
predictors, in pléce of M functions p (which we shall call "p's™ ).
A pumerical example,‘illustrating.the determination of A , D ,A Y ,
and @ from P , and the‘representation of M p's‘ by KQ's , is
presented in the appendix. :

The idea of repregent;ng a iarge number of quantities by a
smaller number has.beeﬁ pursued in statistical studies in fields other
than meteorology. Among psychologiéts, in particular, it is known as
factor analysis (see 657]). The scheme pfesented here is eqﬁivalentvto
one of the péssib;é schemas for factor analysis.

Let us see whether this scheme answefs the objections presented

in the previous section. Certainly the number of predictors has been

decreased, so that the discrepancy between the expected reduction of

- 17 -



. variance and the expected'reductibn,of error has been reduced. But let

us compare a2 prediction formula based upon K Q's with one based upon
Mp's . Since M Q's and M P's completely determine one another, the
Vprediction formula based upon M p's is identical with the one based

upon M Q's , and we may compare the formula based upon K Q's with

the one based upon M Q's .,
| Each of the p's is likely to contain some.nbise. Here we

use "noise” in a broad éense, and include not only errors in observation,
but also any feature of a predictor yhich shows little or no relation to.
other features of the pfedictors, or to different observations of the
éame feature. For example, in certain studies fhe anomalous pressure at

a station accompanying an isolated thunderstorm would be regarded as
noise,

According‘tBM(27);¥ﬁémm§;§“*Qi¥ﬁ'émAii‘;éfiéﬁgééumay”be o
regarded aé the small residuals in approximate linear relations connegt—
ing the p's . They are therefore likely to consist almost entirely ofa
noise,nlike many other quantities which are® small differences between
larger quantities. There is a certain probability, however, that someg-
of these Q's will be»highly_corrglategmwith the predictand,vwithihwtheh»--
sample, and will therefdre enter the prediction formula'wi;h large
coefficients. They will then, if they:are mostly noise, probably lead‘
to large errors when the formula is applied to a new sémple. Th%se errors

]

could be eliminated simply by not using these Q's as predictoﬁs;g

These same remarks do not apply to the Q's with larée

variances, since, ai%iaﬁgh they may contain as much noise as the other-
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i
Q's , they should contain less noise relative to their total variance.

They are therefore more likely to represent real physical features of

«sthe -set of predictors, and any real physical relations involving them

. »should appear in both the sample and the populétion. They should there-

iforé lead to réductions oé error when thé.predictién formula is applied
t0 a new sample.

A;Mwﬂ*gThus‘it,may be éxpected that if thevsample is of only moderate
size, a prediction formula based upon the first K Q's will Yield a

higher reduction of error than one based upon)all M Q's , within the

.population, even though it‘cannot yield so high a reduction of variance

“-within the original sample.

4. Representation of weather patterns and situations

It sometimes happens that the desired predictor is a continuous
field of some physical quantity, for example, sea-level pressure. Of
necessity the field.must be described numerically by a finite number of

-

quantities, such as pressures at a chosen set of points, or perhaps

‘parameters in an analytic expression. The more precisely we attempt to .

- describe the field, the more we encounter the difficulties which arise

when there are too many predictors. To avoid these difficulties, we may

first describe the field as precisely as the data permit, or as is

" convenient, by the pressures at a large number of points. We then repre-

sent these pressures by a small number of Q's in accordance with (16).

2

th _ . v
Let sy denote the m point, -and leF Yk(sm) = Ykm- . The

v
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functions Qk(ti) and Yk(sm) will be called empirical orthogonal

functions, of time and space, respectively. Briefly we shall call them
"Q's" and "Y's" . The orthogonality is expressed by equations (17). and

(18). |
The procedure for determining Q‘ and Y , given P , des-
cribed in the previous section and iliuétrated in thé appendix, is
routine. It may therefore be programmed for automatic computation, In
the work of the Statistical Forecasting Project at M.I.T. this procedure
has been programmed for computation by Whifiwind I, the electronic
digital computer at M.I,T. TheAmatrix multiplié;tion program necessary
to obtain A from P ; and Q@ from P and Y » has been written by
Miss Kelley, Mr. Husbhke, and Mr, Brun. The matrix diagonalization
program, which will handle any symmetric ﬁatrix up to t_he-64th order,
has been written by Mr. Shorr. These programs have also ﬁeen combinéd
by Mr., Shorr into a single continuous rButine, which Qill yield A
D

Y and Q as output, if P is the input.

J 2

In a preliminary study, the data used were the reported values
of sJa—level pressure, at a sef of 64 stations in the United States and
southern Canada, at 1230 Z, during February, in the years 1949-1953.

From these 64 p's (one for each sm ) the variances of the first 16 @'s ,
and the values of the first 8 Y's and Q's , were determined, according
to the procedure deécribed in the previous section.Q '

Fig. 1 shows the 64 stations used in the study. Table ijpre-

i
0

sents the variance of each of the first 16 Q'S , and the cumulative

variance, relative to the sum of the variances of the 64 p's . Apﬁarently

- 20 -



Fig. 1. The 64 stations used in the study.

the pressure field may be fairly accurafely described by a small num-
‘ber of VQ's ; eight Q's specify.91 percent of the variance, while
sixteen specify 97 perqent.v |

The first eight Q's , as defined by means of the data for
Februar& 1949-1953, were also computed for a new sampie, consisting of
similar data for February 1547—1948. Table 1 also includes the mean-
square of each function Q: , and the cumulative mean-square, rélafive
to the sum of the mean-squares of the 64 functions p; . (In the gew
gample the mean-square does not equalithe va:iance because the mean

x *
values of 12 and Qk are not zero.) In terms of mean-squares, eight

Q's again specify 91 percent of the map; é@idently their ability to
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Table 1 . Fraction of the total variance of the sea-level pressure field
(dependent data, Féb., 1949-53), and fraction of the total mean-square of
the sea-level pressure field (independent data, Feb., 1947-48), represen-
ted by the empirical orthogonal function Qk , and by k ,empirical or-~

thogonal functions Ql,-—-,Qk -, for various values of k .,

1949-53  1947-48
k variance total variance mean-sjyuare total mean~square
of Q  of Q,---,Q of of of QI,---,Q;‘
(relative to total . (relative to total .
variance of map) mean-square of map)
1 .302 .302° .239 .239
2 .170 .472. . 274 .513
3 .127 .599 . .109 .622
4 117 .716 .125 747
5 .076 792 .038 .785
6 . 060 .852 .071 .856
7 .036 .888 .033 .889
8 .022 .910 .023. - . 912
o .014 924
10 .013 ©.937 -
11 .008 .945 : - . :
12 .007 .952 ' j
13 .005 .957
14 .005 . .o62 .
15 .004 .966
16 .004 ' .970
|
N i
|
- 22 o



_.xepresent the map is not limited to tpe original sample.
In fig. 2, which wés prepared by Mr., Shorr, the first eight
-Y's -are shown as functions of space. A noteworthy feature'is that the
vave-lengths in the patterns teﬁd to become smaller as the index of
Y increases., Thus the information which is,included in.fhe first few
- Q's pertains priﬁarily to larger-scale features, and these Q's may

be regarded as circulation indices. The discarded informationm, contained

< o

in'the later Q's gertainﬁ primarily to smaller caﬂg~§g§§ﬁges; it
| - may perhabs be regarded as a form of turbulence, of a scale slightly
\larger than that of the features whiqh are lost between observing
;iétians. The emergence of the Q's with large variance as circulation
—n_jndices is additional reason for regarding them as suitable choices for
predictors.
There is no reason why the original M predictoréAneed be
confined te z single level, a single time, of a single weather elemeﬁt.
" Thus the points sm may vary iﬁ three dimensions rather than two, or
in four dimensionsbif time is regaided a8 a dimension, The predictors
nay also bé heterogeneous; any weather elements to which numerical values
may be assignéd may serve as p's in equation (16). In this case, be-
fore variances are éddqg, some decisio; must be made as to how many
millibaers of pressure, for éxample, are to be given the same weighting
as one @egree of temperature. A study of this sorf, in which the fields
of five-day-mezn height and five-day-mean temperature are sumultaneously
represented by a set of Q's , is being perfofmed by Elizabeth Kelley.

E

Thus we may, if we so desire, represent hot merely a pressure

=23 -
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field but an entire weather pattern or weather situation by means of

"empirical orthogonal functions.

/

5; Prediction of the sea-level pressure‘fieid :

The first;prediction pndertaken was that of the sea-level
pressure field, as defined by the pressureé ét the network of 64 stations,
using as a predictor the seé—level preséure field twenty-four hours
earlier., In accordance with the previous discussion, the field of pre-
dictors was represented by a set of eight Q's . Such a Scheme, although
yielding sméller reductions of variance within the original sample than ‘
would be obtained by using 64 p's , or equivalentl& 64 Q's , as predic-
tors, may be éxpected to yield 1argerAreductions of’error whenvéhe
formulas are applied to new samples,

The most direct procedure would be to establish a separatg
prediction formula for each of the 64 p!é i usihg the eight Q's as
predictors. Since the Q's aré_uncorrelated with each other, the pre-

diction formula of the form of (6) reduces to

— ~1 * % *
pm = pm + j{:ak N mek(_) Qk(—) + rm . . (28)
: k=1

Here the minus signs in parentheses denote that the accompanying'yalues
of Qk occur one day earlier than the corresponding value of pm .
An alternative procedure is to use the Q's as both predic-

tands and predictors. The prediction formula is then

\
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i N
| = -1 * X *
, c;.;J = QJ. + B—‘ak N QJQk(_) Qk(_) + RJ . o (29)

|

The predicted pressure field is then reconstructed from the predicted

Q's by the approximation
. - K

. —_— N * '

P (t) ~ D, + ZYkm%(t) : | (30)

k=1 .

The question then'argses as to whether there are any advantages,

/!
other than convenience, in choosing a small number of Q's as predic-

tands. From (28), (29), and (16) it follows that

. M "
rm = ZYJij s . . (31)
o1 v

sq that the error in predicting pm diréctly is identical with the
error in pm obtained by predicting all the Q's and reconstructing
the pressure field. Af first it'méght appear that.we could gain nothing
in predicting pm by difcarding some of our information concerning

pmv . However, if the portion of pm represented by the Q's with low
Qariance is 1arge1y’unpredictab1e within the population, but at the same
time éppears to be predictable within the sample, we may actually lessen
the errors in prediction, within the population, by not attempting to
predict the unpredictable. The Q's may thus play an iﬁportant part as
predictands as well as‘éredictors.

The optimum number of Q's as predictands need not be the

same as the optimum number as predictors, and there is no obvious simple

- 27 -
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way of determining these optimum numbers. Accordingly, the reduction of
Variance>of the presgﬁre field, as represented by J Q's and predicted
by K Q's , has been determined for all values‘of J and K up to
éight. The formulas established fér thevo?iginal sample (194941953) have
then been épplied to the independent sample (1947-1948), and reductions
of error have been ccmputed. _ . | ; |

The reductions of variance and of etrror appear in ‘table 2. For
the original sample, the reducfions of var;ance necessarily increase (or
remain the same) as either J or K increases. A 50 per cent reduction
results from the use of ‘eight predictgnds and eight predictors,

For the ﬁew sample, nothing appears to be gained by choosing
more than four predictands'or more than five predictors. The 31 percent
reduction of error when J =4 and K =5 is not surpassed for other
values of J and K up to 8. No tests>were made for J and K greater
than 8, but it is dqubtfui that additional predictands could greatly
imprové the prediction, since they account for but 9 per cent of the
total variance, and pfesumably only a small fraction of this 9 per cent )
is predictable. On the other hand, the errors in predicting the re-
maining Q's could well be larger than the Q's themselves. Although
the new sample used is toé small for drawing final conclusions, it is
not unlikely fhat the optimum number of' Q's , both as predictorsvand
predictands, is less than 8. The optimum numbers are dependent upon the
size of the’original sample; if a larger sample had been chosen, there
would have been a higher probability of obtaining stable relations among

the Q's , and the optimum numbers would presumably have been higher,

- 28 =



Table 2 . Reduction of total variance (Feb., 1949-53) and. reduction of
total error (Feb., 1947-48), of the sea-level pressure field; as repre-

sented by Q --—,QJ , and predicted by Q15—-—,QK s for all values of

1’7
J and K up to 8. Figures are in hundredths.

1949-53 ' - ' 1947-48

J= 1 2 3 4 5 6 7 8 1 2 3 4 5 6 71 8
K<1 14 15 15 15 15 15 16 16 11 13 14 14 14 14 14 14
2 14 18 20 21 22 22 23 23 10 20 21 24 22 21 21 21

3 16 23 27 28 30 31 31 31 10, 21 24 27 25 22 22 22

4 i7 29 33 '35 37 38 39 39 08 24 27 20 26 23 23 23

5 17 20 33 38 40 41 41 42 08 24 28 31 20 25 25 25

6 19 31 36 40 42 44 45 45 06 22 26 29 26 26 26 26
-7 19 31 36 41 44 46 46 47 06 22 26 28 26 25 25 25

8 20 32 37 43 46 48 49 50 07 23 28 30 29 30 30 30

The Q&_ggggggﬁ,reduction of error obtained is hardly sufficient
for thé formula to be practical However, the purpose of this initial
-studyVWas to examine the feasibility of using empirical orthogonal func-

‘
fioné, and the resulfs clearly justify their use. The reduction of error
cannot bekdirectly compared with that of other studies, since it ié.a
reduction of the average error at all 64 stations, including thosg ﬁith
unfavorable locations near the boﬁndary of the data; while the physiéél

hd ’ . .
quantities used as predictors bave been restricted to pressure at one
level at one time. It is reasonable to believe that when furthervs£qdies
are performed, with larger samples, and with mofevphysical quantities as
predictors, farmulas of practical value can be established if embirical

A

orthogonal functions are used.
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6. Further uses of empirical orthogonal functions

2

The possible uses of empifical orthogonal functions in the
general problem of weather prediétion far exceed the particular purpose
for which fhey were introduced, namely, the specification of avSet of
predicfors by a smaller set. Some of these possipilities occur becaﬁse
the functions provide a convenient method of describing a weather map
or situation by a small set of ﬁumbérs. Thus, for example, empirical
orthogonél functions might be used for chopsing analogues or defining
.Weather types. However, there are two general areas in which émpirical

-

orthogonal functions seem to offer special promise,

One of these is nonlinear statistical prediction. There afe -
at least two reasons for beliefing that good nonlinear prediction formu-
las are attainable, and that ;mong these may be quadratic formulas. On
the one hand,‘as we have already mentioned,.certain simplified forms of
rtﬂe dy;amic equations express future stateé of the atmosphere as quadratic
functions of the presgnt state. On the other hand, in attempting to
’establish linear prediction formulas, one often obtaiﬁs the impression
that one formula holds during one type of "weather regime’, and another
formula holds during énother type. If this impression is justified, so
that the prediction coeffiéients are expressible in terms of a regime,
which in turn is expressible in terms .of the present weather pattern,
the separatellinear formulas may bé regarded as a single nonlinear for--

mula, In particular, this nonlinear formula is quadratic if the predic—

tion coefficients are linear functions of the weather pattern.



i If we attempt to use the 4M(M + 1) products of M original
| » :

predictbrs as additional predictors, the total number of predictors is 
hopeles%ly large. If the M original predictors are first represenfed
by K Qas s the iK(K + 1) products of ?hese Q's will represeﬁt the
additioﬁal predictors. This number may still be t9§ large, but in that.
case, it may be further reduced by letting

3K (K+1)

* * X v 0 0 ’
Q (tQ; (%) = Z Tkt (32)
h=1

i 1 t )
where the Y0 s and Qo s satisfy relations analogous to (17) and (18).

- )

Wé‘may then choose a small number of Qo s to supplement the Q's as
pfedictors.

The other area in which empirical orthogonal functions seem to
offer much promise is dynamical prediction (wﬁich is also nonlinear). The
usual method of integrating a system of d&namic equations is a numerical
one, in which one or more bartial,differential equations are feplaped by
a set of difference equations, whose dependent variables are the values
of one or more weather elements ét a set of grid points. If these depen-
Aent yariables are represented by a small number of Q's , as in
equation (30), the diffgrence eéuations may be transformed into a new
set, in which the dependent variables are the Q's themselves..Thisvnew
set of equations may then be integrated numerically.>A study of this
sort, in which the origiﬁal dynamic equation is a form of the barotrépic
vorticity equation, and the original dependent variables are valueé of

=

500-millibar height, is currently being perféfﬁed by William Sellers.
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47The_possible advantages of this method over the usual method
of integrating the dynamic equationé are several. First of all, in.
rgpﬂéﬁiﬂg the original dependent variables by a small set of Q's , we
are apparently eliminatiﬁg some 0of the smaller-scale features of the '
weather pattern, Which seem to be unpred{ctable by simple statistical
methods. These features probably are not unpredictable by dynamic methods,
bﬁt they arewlikely to be unpredictable from the available initial datg~
by ggans'of the simplified dynamickequations which have given such grati-
fying results in predicting the larger—écaie features. }f this is the
case, the elimination of the smaller-scale feéfureé shoﬁld improve -the
prediction, ’ |

A further advantage is simplicity, Not only is the number of

difference equations greatly reduced, but the maximum increment of time

- compatible with computational'stability should be increased, since the

smaller-scale fluctuations are eliminated. Finally, in approximating the
predicted weather pattern‘by a small number of Qs , we increase the -
probability that the boundary values, if not predictéd b& the original

dynamic equations, will be compatible with the dynamically predicted

values in the interior,



 APPENDIX

1. Expected mean-square errors

.Given a population E containing M independent predictors

pl,———,pM and a predictand x . Let po =1 . let F ‘be any particuj
I;;Msampléwa ;iiefw§ f.,Let'a singlevbar denote the mean value 6f a
quaﬂtity over F , and lét a double bar denote the mean value over E

Let the set of all samples of size N be divided into subsets,
fuch that within any subset the values of pi,———,pM are the same for |
e§ery sample,‘while the values of x Qary'from sample to sample. Let
-e—gquare brackefs denote théumean.valug.ofua statistic over all samples
within the subset containing F , and let braces denote the mean value
over all samples of size Nv , i.e., the expected value. |

Since predictions are uﬁaltered if the-predictors are replaced
by'independent linear combinations of themselves, we may assume without

loss of generality that

PD = ¢ for m, n = 0,———,M . (33)

We may also assume that, x = 0 . By diagonalizing the matrix of order

————

M + 1 whose elements are pmpn , We can obtain linear combinations

QO’———’QM of Pgr===>Py such that

QQ_ = § ] (34)

§



= 25, (35)

. mn m - mn
and _
M M
T 3 S
2
Z Qm Z P, - (85)
m=0 m:o -

We may define prediction coefficiernts tém carsd o~ Emd mestdhuls

p. and r by the relations

M .
X = meQmﬂ-Cp 9 @)
m=
where -
Qmp = o K} (BB))
and
M ,
N X = Zchm + T o, | ‘ : (9)
where
er = 0 .. . (a40) ’»
We wish to compare {rz} and {rz} with {pz} .
It follows from (37) and (39) that
M .
Z(cm -b)Q +x , o 4D)
. n=0
and hence from (40) and (35) that
M 1
o = Z(Qm> I w@2)
n=0
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From (42), (40), and (35),

— X
12 = - Z(Qi>l(6;5>2 , .(43,)
o '

‘while from (42), (38), and (34)

(;E >- : (44)

m

Assuming that there are no pbpulation relations between p and

. the predictors, and that samples are randomly chosen, we find that

X : L
\[(5;3)2]’ - 3 Z e, [pwem] = 226 . @
N - |
Hence ’ |

[?J - 2 ( N M"t_l" | (46)

and .

— — Mo
[rz] = Pz A + %Z(QSA ! . (47)
m=0 )

-

The value of [rz] depends upon the particular sample F

.. while that of [ rz] does not. It follows from (46) that

L 4

{;‘z’}zz'?(_m;;l) ," (48)

and, since the arithmetic mean of the reciprocals of a set of positive
numbers exceeds the reci'procal of the arithmetic mean, it follows from

z

(47), (36), and (33) that
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{?}>?1.+M;1>, - a9

Equations (48)'and (49) are the desired comparisons.

_For the special case M =0 , whence Q, =1 , x =P, and

* — ' ‘ '
X =zx-x=1r , (48) and (49) reduce to the familiar relations

v

ol

{;*—Z}r_ (‘%:9 (50)
{?} = (l + %) :—2_./ . | . (51)

If we approximate the expected value of a quotient by the quotient of the
expected values, we obtain from (48), (50), (49), and (51) the approxi-

mate relations (11) and (12) in the text of the report.

2. The optimum representation of a set of functions

Given a set of M functions pl(t),—;;;pM(t) . Let a bar
denote the mean, and let a star denote a departure from the mean, with
respect to the independent variable 't . For any K functions

o

ql(t),———,qK(t), where K< M ,41et

K e

N .

= (862)

pm }:ykmqk * rm g (52)

k=1 : ..

' . . . i
where the coefficients Yym 2T€ chosen so that ' - i
~ ’ v I
_ : , : |
. |
|
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= 0 for k=1,---,K; m=1,~--,M . - (83)

T
Y
!

We wish to determine the set of K functions B L which minimizes
j o :

t
" the total unexplained variance

o Mo M M 7K Z . '
2 : T2 \ y
) R = 2 r,o= Z P - Z L_Jykmqk . (54)
o . m=1 m=1 . m=1 \k=1
. ,Let M.
- pm = ZYJmQJ ) - (55)
. : - J=1 '
Where !
) M
Zykm Jm SkJ , L (56)
_ m=1 i
and
o ’ > > '
Qij = akgkj. s | where a, = o8y = o . (57)

We shall show that the functions Q;(t),;--,qz(t) satisfy the reQuire-‘
ments ﬁor Q""" - ‘

The functions ql,---—,qK which minimize R are not uniquely
determined, since any K independent linear combinations serve the pur-
pose equally,we11.>We may thérefore restrict our choice of funcfioné so

-

that

: )
Q. = 0 it kD j .

4 (58)

U
and, retaining this restriction, further restrict our choice so that

——
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From (52), (53), and (59),

=

- (&) am
Yem = \ 9 9P (60)

and equation (54) reduces to

l—— X K2 ‘
Y cokces TR

nm=1 m=1 k=1
Let
M - L.
] b o + P (62)
QY = Pkt P :

+ j= ’
where R

_ ;

Qp, = 0 for § = 1,---,M; k = 1,--=,K ., (63)

The lower limit j = k in the summation is possible because of restric-
tion (58).
From (55) and (62), with the aid of (56), (57), and (63),

equation (61) further reduces to

M
2 2
M K zaj ik
bl buml j:k - :
R = ;- - 64
LR e
j=1. k=1 2 2
a, b, + . :
}: J Jk " : i
j=k : .

We must choose the quéntities b and pk , without violating restric-

jk
tion (59), to minimize R , or equivalently, to maximize the fraction
inlparentheses in (64) for each value of k .‘

Temporarily neglecting restriction (59), we can, for any

cﬁoice_of b,

ik maximize the fraction by choosing pk =0 . The
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frgction;then becomes the ratio of a weighted average value of a?
(with _j;é k ) to a similarly weighted average value of a.j ; ité

maximum value, namely a
i

x will occur if b

i Kk = 1 and bkj = 0 when

3 >k . Substituting these choices of P, and b . into (62), we

find that the minimum value of R , namely

- M K M
R = . - y = .
Zfa L,k Z K | s
j=1 k=1 k=K+1
occurs when
*
qk = Qk for k = },---,K . ' (66)

Siﬁée‘this value of <qk does not violate (59), our conclusion is verified.

3. Matrix diagonalization by Jacobi's method

Given a square symmetric matrix A of order M . We wish to
determine a square matrix Y such that

we o= 1, (67)

YAY' D , (68)

~where I is the identity matrix and D is a squafe matrix whose non-
diagonal elements vanish,

Let the non-diagonal element of A of largest absolute value
be Ajk {with j <k ).

Let © satisfy the equation -
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iterations,

tan 20 = 2Ajk/ (A.J'J - {&kk) | (63)

=

(with 0£8<7/2 ), Let Y. , be a square matrix of ordéf M iR

1
which
_ , _ N
(Yl)Jj (Yl)kk“ cos © |
(Yl)jk = (-Yl)kj = sin'e | -
(Yl)mm = 1 unless m=.Jj or m=k ,
(Yl)mn = 0 otherwise . )
Then L
1 - . ’ y
Y, ¥s = 1 : (71)
while ) f"g)
. . (
Y, AY, = A 7

is a symmetric matrix in which the diagonal sum equals»thaf 3% & H €ﬁ$
sum of the squares of the non-diagonal élements is (ZAji) iééé %ﬁ&ﬂ

that of A , and (Al)jk =0 |,
Now select the non-diagonal element of A1 of léfégéé &858&3%&

value, and repeat the process, determining a matrix Y2 . After L

n
e
-

Y17 ¥p¥) (LY ==Y %)) | @3) :

while

8

— — o — * - (7
(V¥ =YY DAY, ==Y, ¥)) (74)

is a symmetric matrix whose diagonal sum equals that of A . THé ngi=

- diagonal elements of ‘AL may be made as small as desired 5§ éﬁggéiﬁé ﬁ

large enough, so that A . -

lim : ‘ fmm
Y o= Do (Y, -—-Y,Y)) (78)



satisfies (67) and (68).

..4. Numerical example

Suppose that the observed sea-level pressures, in millibars,

at three stations on five days have been tabulated as follows:

... station 1 _ station 2 . station 3

day 1 1028 1022 1019
day 2 1026 1025 1015
day 3 1020 1020 1010
. day 4 - 1009 1015 1013

S day 5 1012 1008 1023

__The matrix P is then simply the array ofvnumbers in this table,
arranged just as they are in the table. To obtain P*. from P‘ subtract

from each number the mean value of the ngmbers in that column, so that

9 4 3

7° 7 -1

P* = 1 2 -6
-10 -3 -3

-7 -10 7

Each element of A = P*'P is obtained by multiplying corre-

2
sponding numbers in two ¢olumns of P* , and summing; thus A, = (9)

12
(-10) (-3) + (-7)(-10) = 187, etc, so that

s 24 %24 102+ D2 =280, A, = (9@ + M@ + M@ +

280 187 -5

A =1 187 178 -68
-5 -68 104
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To determine Y1 and A17 from A , let Ajk be the non-diagonal

element of A of largest absolute value (with j < k ), so_thét i=1,

k=2 |, Ajj = 280 , Akk = 178 , apd ,Ajk = 187 . Determine cos 28
by the relation
A -
+ JJ Akk _ - 102
cos 286 = - = = 0.2631 |,
(A.. - A )2 + (2A. )2 QISOZS .
Jd kk Jk° o
the sign being positive if .Ajj ~ Akk and Ajk have the same signs, .

~

and negative otherwise. Then determine cos 8 and sin 6 by the rela-

tions
cos & = Q%(l + cos 28) = ﬂ.6315 = 0.795 ,
sin 8 = \(3(1 - cos 20) = \[(3685 = 0.607

Next, write the identity matrix I , and write the matrix A
below it. Augment both matrices by two new columns, the first of these =~~~
being ’ s
(cos 0 x jth column + sin 68 = kth column) ,

and the record being

(-sin 0 x jth column + cos 6 x kth column) - .,

Similarly, augment matrix A , but not I , by two rows similarly
'detérmined, so that the augmented matrix A becomes symmetric. Then
strike out the Jth and kth columns in both matrices, and the jth

' J
and kth rows in A , but not in I ., The result is-w-. - §
’ |
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1.000 0 0 .795 =.607

0 1.000 0 .607 .795

; 0 0 |1.000 0 0
) .

280 187 -5 336 21

187 178  -68 257 28

-5 68 104 =45 ‘ -51

336 257 _45 423 0

21 28  |-51 0 35

{The numbers enclosed in rectangles are those which have not been struck

out, The upper of these arrays of numbers is the matrix Yi , and the

lower is A1 . The order in which the columné and rows occur has been

changed, but this is immaterial,

The largest non-diagonal element of >A1 is next selectéd, and
! ) .
the’prOCedure is repeated, until the non-diagonal elements are as small
as desired. The procedure is illustrated be}ow (with the decimal point

omitted from I ).

LY
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.iteration

~-21 28

1

.Ajj »280
Ajk 187
Akk 178
cos 28‘ . 2631
cos 6 .795
-sin 8 . 607
1000 0 0] 795
0 1000 0} 607

0 0 1000 0
280 187 -5 336
187 178 -68{ 257
-5 -68 104] -45
336 257 -45 423

425

3

104

_51

35

- .5603

. 469

.883

~607 -536

795 702

0 469
21
28

51 4

0 -21

35

61

-285
373
-883

-116

40
61

131 |

57
125
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423
40
131

.9645

.99}
.133

750
651
-117

425
-21

57
429

430

-388
289
-875

=17

125

126

126

-21
429
. 9950
.999
.050

~-498
734
463

N w o wNilw o

126

. 9987
1,000

.025 .

776 -400
615 307
-140 -863

-488
727/
485

430
0 126
o 3

431 0
0 126

N o o N o




v
b
|

i

In this example; within the limits of the round-off error, .

five iterations are sufficient to reduce the non—diaéonal elements of

A to zero, The original matrices I and A , and the final matrices

Y' (above) and D (below), have been enclosed in rectangles. The

increase in the diagonal sum of A by two units is the result of round-

off error. The numbers which at the beginning of each step were

non- -

diagonal elements of largest absolute value have been underlined.

The num?er of iterations necessary to diagonalize A
increase foughly as rapidly as the square of the order of A
humber of multiplications per iteration increases approximately
fffst power. In manual computation the labor per multiplication
increase with the order of A

, 8ince more significant figures

carried when the number of iterations is large. The total labor

probably increases at least as rapidly as the cube of the order.

The matrix Y , the transpose of Y' , is

. : .776 .615 -.140
Y = ~.400 .30Y -.863
-.488 = 727 .485

so that
1.000  .004 .00l
YYy' = . .004 - .999  .000
.001 ,000  1.002

should
while thg
as the
may also
must be

therefore

which approximates the identity I ., the small discrepancies resulting .

from round-off error.

N\

- 45 -



Next,

o 9.0 -5.0 0

9.9 0.2 1.2

* *__y
Q = PY = 2.8 5.4 -1.9.
' -9.2 5.7 1.2
-12.6 -6.3 -0.5

.

As in the original tabulation oonbservations, each row refers to one
day, and each column fefers,to one empirical orthogonal function. The
large variance of the first column and thé smallbvariance-of the last
are immediately apparent. The sums of squareé within the columns are
430.2, 126.4, and 6.7, which agree with the diagonai elements of D ,'
except for round-off error.

Since the first two orthogonal functiéds explain nearly 99 per

cent of the‘variance of the three pressures, it is possible to approxi-

mate the p's as linear combinations of two Q's . Thus

9.0 -5.0 776 615 -,140 9.0 4.0 3.1.
9.9 0.2 (—.400 .307 —.sss) 7.6 6.2 -1.6
P* | 2.8 5.4 | = 0.0 3.4 -5.0
-9.2 5.7 | -9.4 -3.9 -3.6
12.6 -6.3 : \-7.2 -9.6 7.2

' *
The first two matrices in this relation are Q , with the final column

' *
omitted, and Y , with the final row omitted. Comparing 3 , the

. 'y p * ] 3 * -
approximation for P s with p s We see that in only one instance is
the discrepancy greater than 1.0 millibar, Thus the approximation should

be satisfactory for most purposes,
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