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Chapter 3 The Fourier Transform

3.1 Introduction

There are two main approaches to Fourier transform theory

1. DeÞne the Fourier transform of a function f(t) as

F (º) =

Z ∞

−∞
f(t) exp(¡j2¼ºt) dt (3.1)

and show that under suitable conditions f(t) can be recovered from F (º) via the inverse
transform relationship

f(t) =

Z ∞

−∞
F (º) exp(+j2¼ºt) dº (3.2)

This can be motivated in terms of Þnding the eigenvalues of a linear time-invariant system,
as discussed in the previous chapter. The calculation of F (º) from f (t) is called Fourier
analysis, while the recovery of f (t) from F (º) is called Fourier synthesis.

2. Start from the Fourier series which expresses a periodic function of t as a sum of cosinusoidal
and sinusoidal functions and let the period T become large.

The Þrst approach is more satisfactory mathematically but the second is somewhat more easily
motivated physically. We shall adopt the Þrst approach and derive the second via generalized
function theory.

3.2 The Fourier transform and its inverse

Historically, people were interested whether or not f(t) could be successfully recovered from F (º)
on a point-by-point basis. Thus if we deÞne the Fourier transform by (3.1) and then calculate

fM (t) =

Z M

−M
F (º) exp(j2¼ºt) dº (3.3)

we would like to show that fM (t) ! f(t) as M ! 1.
Substituting (3.1) into the equation for fM (t) yields

fM (t) =

Z M

−M

·Z ∞

−∞
f(¿) exp(¡j2¼º¿) d¿

¸
exp(j2¼ºt) dº (3.4)

=

Z ∞

−∞
f(¿)

·Z M

−M
exp [j2¼º (t¡ ¿)] d¿

¸
d¿ (3.5)

=

Z ∞

−∞
f(¿)

sin [2¼M (t¡ ¿)]

¼ (t¡ ¿)
d¿ (3.6)



453.701 Linear Systems, S.M. Tan, The University of Auckland 3-2

This is called a Dirichlet integral. It is a weighted average of f(¿) with a sin (Mx) =x weighting
centred about ¿ = t. Equivalently, we may regard it as the convolution of f with the function

hM (t) =
sin (2¼Mt)

¼t

If we can show that as M tends to inÞnity hM (t) ! ± (t) ; then (f ¤ hM ) ! (f ¤ ±) = f; so the
inverse transform will recover f(t) (see Figure 3.1).
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Figure 3.1 Function hM (t) with which f (t) is convolved when evaluating the inverse transform
integral using integration limit M = 8

(Technical note: It is easy to show that the Dirichlet integral evaluates to f(t) provided f is well
behaved, e.g. if f is differentiable at t (as we shall show later). However, we usually want f to
be less well behaved than this and the result becomes harder to prove. In fact, even as strong a
condition as the continuity of f at t is not sufficient to make the inverse Fourier transform converge
at t.)

Notes:

1. The Fourier transform transforms one complex function of a real variable into another
complex function of a (different) real variable.

2. Other deÞnitions of the Fourier transform are also in use which differ in scaling. A common
alternative, particularly when associated with the Laplace transform, is

F (!) =

Z ∞

−∞
f(t)e−jωt dt (3.7)

f(t) =
1

2¼

Z ∞

−∞
F (!)ejωt d! (3.8)

and yet another version is similar but with a 1=
p
2¼ factor in front of both integrals. Our

version keeps most of the 2¼�s in the exponential factor where they belong and simpliÞes and
rationalises the scaling in many other places. However one must be able to cope with the
other forms because is no general agreement as to which deÞnition should be used. Another
(less common) variation is to associate the negative sign in the exponent with the inverse
rather than the forward transform.
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3.2.1 Existence and invertibility of the Fourier transform

Many conditions can be used to describe classes of functions which have classical Fourier transforms
(i.e., the Fourier transform should exist everywhere and be Þnite). It is necessary to further restrict
this class if we want to be able to recover the original function by using the inverse transform
formula.

One sufficient (though not necessary) condition (due to Jordan) is that if f is in L1 (i.e., f is
absolutely integrable) and if it is of bounded variation on every Þnite interval, then F (º)
exists and f(t) can be recovered from the inverse Fourier transform relationship at each point at
which f is continuous.

The Þrst condition (that f is in L1) means thatZ ∞

−∞
jf(t)j dt < 1 (3.9)

while the second (bounded variation) means that f(t) can be expressed as the difference of two
bounded, monotonic increasing functions and excludes functions like t sin(1=t).

If f(t) is discontinuous at t = t0; the inverse Fourier transform integral still converges at t0 and its
value there is

1

2

£
f
¡
t+0

¢
+ f

¡
t−0

¢¤
(3.10)

(Technical note: The right and left-hand limits are guaranteed to exist for functions of bounded
variation.)

Notes:

1. The existence of the Fourier transform is guaranteed if f is just absolutely integrable.
Bounded variation in a neighbourhood of a point is needed for the inverse transform to
recover the value of the function at that point (or the middle of the jump as in (3.10) if the
function is discontinuous there).

2. The above approach to Fourier transforms is asymmetrical in the sense that the Fourier
transforms of many absolutely integrable functions are not absolutely integrable and so do
not lie in the original space of functions. For example, as we shall see later, the Fourier
transform of the absolutely integrable �top-hat� function ¦(t) deÞned by

¦(t) =

½
1 if jtj < 1

2
0 otherwise

(3.11)

is sinc(º). Although sinc(º) is bounded, it is not absolutely integrable. The inverse transform
integral in this case has to be interpreted somewhat differently from that in the Fourier
transform. Technically, when the integral in the Fourier transform is taken as a Lebesgue
integral, that in the inverse Fourier transform is an improper Riemann integral which may
only exist in the sense of the Cauchy principal value.

Of course, if the Fourier transform of the function does happen to be absolutely integrable,
the inverse transform integral can be taken as a standard Lebesgue integral as well.

3. An alternative approach is to restrict the class of functions to be the square integrable func-
tions (i.e. the so called L2 functions) for whichZ ∞

−∞
jf(t)j2 dt < 1 (3.12)
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It can be shown that the Fourier transform of an L2 function is guaranteed to be another L2
function. This leads to a more symmetrical theory but in this case the transform and the
inverse transform do not necessarily converge pointwise but may do so only in the L2 sense.

4. Both of the above approaches are too restrictive for many practical applications because we
want to be able to take Fourier transforms of a wider class of functions and to be sure that the
spaces of the original and transformed functions coincide. As we shall see later, considering
generalized functions allows us to do just this and to simplify greatly the conditions for
existence of the Fourier transform.

3.3 Basic properties

If F (º) is the Fourier transform of f(t) we will write f(t) $ F (º) etc. It can generally be assumed
that a function denoted by a capital (upper case) letter is the Fourier transform of the function
denoted by the corresponding small (lower case) letter.

Proofs of the following properties, where omitted, should be done as exercises. A common step is
to interchange the order of integration and we will assume that this is allowed, but with the under-
standing that in each case the functions must be sufficiently well behaved. These properties also
apply for Fourier transforms of generalized functions (to be deÞned later) except where explicitly
stated.

3.3.1 Linearity

c1f1(t) + c2f2(t) $ c1F1(º) + c2F2(º) (3.13)

for any real or complex constants c1 and c2.

3.3.2 Behaviour under complex conjugation

f∗(t) $ F ∗(¡º) (3.14)

Note the reversal of the frequency axis.

3.3.3 Duality

F (t) $ f(¡º) (3.15)

For every forward Fourier transform there is a corresponding dual inverse transform which is almost
the same except for a sign reversal.

Note that if we are not working with L2 functions or generalized functions, we must add the
condition that the appropriate transforms exist.
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3.3.4 Shifting

f(t¡ t0) $ exp(¡j2¼ºt0)F (º) (3.16)

exp(+j2¼º0t)f(t) $ F (º ¡ º0) (3.17)

Shifting a function in one domain has no effect on the magnitude of the corresponding function
in the other domain but affects only its phase. The amount of phase shift varies linearly and the
slope depends on the amount of shift in the other domain.

3.3.5 Modulation

f(t) cos(2¼º0t) $ 1

2
[F (º + º0) + F (º ¡ º0)] (3.18)

f(t) sin(2¼º0t) $ j

2
[F (º + º0)¡ F (º ¡ º0)] (3.19)

3.3.6 Interference

f(t¡ t0) + f(t+ t0) $ 2 cos(2¼ºt0)F (º) (3.20)

3.3.7 Scaling

f(at) $ 1

jaj F
³º
a

´
(3.21)

1

jbj f
µ
t

b

¶
$ F (bº) (3.22)

The form is the same in each direction. Factors a and b must be real. Note in particular that

f(¡t) $ F (¡º) (3.23)

3.3.8 Differentiation

df(t)

dt
$ j2¼º F (º) (3.24)

¡j2¼t f(t) $ dF (º)

dº
(3.25)

Exercise: Show that if tkf(t) is absolutely integrable for all 0 · k · n then the Fourier transform
F (º) is differentiable n times.
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3.3.9 Integration

Provided that Z ∞

−∞
f(t) dt = 0 (3.26)

we Þnd that Z t

−∞
f(¿) d¿ $ 1

j2¼º
F (º) (3.27)

Similarly provided that Z ∞

−∞
F (º) dº = 0; (3.28)

¡ 1

j2¼t
f(t) $

Z ν

−∞
F (¹) d¹ (3.29)

If the integrals over the entire range of the variables do not vanish, we must use generalized
functions in the transforms, as will be discussed later.

3.3.10 Symmetry

Let us write the real and imaginary parts of the transform pair f(t) and F (º) explicitly as follows:

f(t) = fr(t) + jfi(t)

F (º) = Fr(º) + jFi(º)

In these, fr, fi, Fr and Fi are all real functions,

1. f(t) real =) F (¡º) = F ∗(º) , i.e. F is hermitian (meaning that Fr is even and Fi is odd).

2. f(t) imaginary =) F (¡º) = ¡F ∗(º) , i.e. F is antihermitian (meaning that Fr is odd and
Fi is even).

3. f(t) even =) F (¡º) = F (º) , i.e., F (º) is even.

4. f(t) odd =) F (¡º) = ¡F (º) , i.e., F (º) is odd.

Some combinations of these cases are also meaningful. For example, the Fourier transform of a
real, odd function must be both hermitian and odd, which means that it must be purely imaginary.

Any arbitrary function f(t) can be written as the sum of an even function fe(t) and an odd function
fo(t).

f(t) = fe(t) + fo(t) (3.30)

fe(t) =
f(t) + f(¡t)

2
(3.31)

fo(t) =
f(t)¡ f(¡t)

2
(3.32)

Therefore, if f(t) is real,

fe(t) $ Fr(º) (3.33)

fo(t) $ jFi(º) (3.34)
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Thus for a real function f(t), the real part of the Fourier transform is due to the even part of f(t)
and the imaginary part of the transform is due to the odd part of f(t).

For a causal real function (i.e., f(t) = 0 for t < 0), we have in addition that

fe(t) = fo(t) = 1
2f(t) if t > 0

fe(t) + fo(t) = 0 if t < 0
(3.35)

This dependence between fe and fo means that there is also a dependence between Fr and Fi.

3.3.11 Convolution

f(t)

F (º)
- h(t)

H(º)
- g(t)

G(º)

Theorem: If g(t) = (f ¤ h)(t) then G(º) = F (º)H(º).

Proof:

G(º) =

Z ∞

−∞
exp(¡j2¼ºt)g(t) dt (3.36)

=

Z ∞

−∞
exp(¡j2¼ºt)

·Z ∞

−∞
f(¿)h(t¡ ¿) d¿

¸
dt (3.37)

Assuming that we can interchange the order of the integrations,

G(º) =

Z ∞

−∞
f(¿)

·Z ∞

−∞
exp(¡j2¼ºt)h(t¡ ¿) dt

¸
d¿ (3.38)

The term in the brackets is the Fourier transform of h(t¡ ¿). By the time shifting property,Z ∞

−∞
exp(¡j2¼ºt)h(t¡ ¿) dt = exp(¡j2¼º¿)H(º) (3.39)

so that

G(º) =

Z ∞

−∞
f(¿) exp(¡j2¼º¿)H(º) d¿ = F (º)H(º) (3.40)

Because of the symmetry in the forward and inverse Fourier transform relationships, we also see
that if f(t) = f1(t) f2(t) then F (º) = (F1 ¤ F2)(º). i.e.,

f1(t) f2(t) $ (F1 ¤ F2)(º) (3.41)

3.3.12 Parseval�s theorem

Theorem: Z ∞

−∞
f∗(t)g(t) dt =

Z ∞

−∞
F ∗(º)G(º) dº (3.42)
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Proof: Z ∞

−∞
f∗(t)g(t) dt =

Z ∞

−∞
f∗(t)

·Z ∞

−∞
G (º) exp (j2¼ºt)

¸
dt (3.43)

=

Z ∞

−∞
G(º)

·Z ∞

−∞
f∗ (t) exp (j2¼ºt) dt

¸
dº (3.44)

=

Z ∞

−∞
G(º)

·Z ∞

−∞
f (t) exp (¡j2¼ºt) dt

¸∗
dº (3.45)

=

Z ∞

−∞
F ∗(º)G(º) dº (3.46)

The expression
R∞
−∞ f∗(t)g(t) dt can be thought of as an inner product of the two functions f(t)

and g(t), and is written in Dirac notation as hf(t)jg(t)i. Parseval�s theorem thus states that the
inner product is invariant under a Fourier transformation.

hf(t)jg(t)i = hF (º)jG(º)i (3.47)

Note however that there are some deÞnitions of the Fourier transform in which different scalings
are used and for which the equality of the inner products has to be replaced by the proportionality
of the inner products between the two spaces.

Parseval�s theorem can also be written in the alternative formsZ ∞

−∞
f(t)g(t) dt =

Z ∞

−∞
F (¡º)G(º) dº =

Z ∞

−∞
F (º)G(¡º) dº (3.48)

Z ∞

−∞
f(¡t)g(t) dt =

Z ∞

−∞
f(t)g(¡t) dt =

Z ∞

−∞
F (º)G(º) dº (3.49)

both of which follow from the behaviour of the Fourier transform under conjugation. Using the
notation

hf(t); g(t)i =
Z ∞

−∞
f(t)g(t) dt (3.50)

just as when we deÞned the functional induced by a locally integrable function, Parseval�s theorem
may also be written as

hf(t); g(t)i = hF (¡º); G(º)i = hF (º); G(¡º)i (3.51)

hf(¡t); g(t)i = hf(t); g(¡t)i = hF (º); G(º)i (3.52)

As we shall see, these form the basis for deÞning the Fourier transform of generalized functions.

3.3.13 Energy invariance

Putting f(t) = g(t) in Parseval�s theorem givesZ ∞

−∞
jf(t)j2 dt =

Z ∞

−∞
jF (º)j2 dº (3.53)

Thus the energy (or its equivalent) is the same in each domain. This result is called Rayleigh�s
theorem.
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3.4 Examples of Fourier Transforms

3.4.1 The rectangular pulse

f(t) = A¦

µ
t

T

¶
=

½
A if jtj < T=2
0 otherwise

(3.54)

Using the deÞnition of the Fourier transform

F (º) =

Z T/2

−T/2
A exp(¡j2¼ºt) dt (3.55)

= A

·
exp (¡j2¼ºt)

¡j2¼º

¸T/2
−T/2

(3.56)

= AT

µ
sin¼ºT

¼ºT

¶
(3.57)

= AT sinc(ºT ) (3.58)

Notice that

1. The zeros of F (º) are at integer multiples of 1=T . Thus the wider is the pulse in the t domain,
the narrower is the transform in the º domain.

2. The value of F (0) is equal to the area under the graph of f(t). Similarly, the value of f(0) is
equal to the area under F (º). These are general results which follow immediately from the
deÞnitions and are useful for checking.

F (0) =

Z ∞

−∞
f(t) dt and f(0) =

Z ∞

−∞
F (º) dº (3.59)

3.4.2 Two pulses

f(t) =

8<:
1 if ¡ T < t < 0
¡1 if 0 < t < T
0 otherwise

(3.60)

This can be written as

f(t) = ¦

Ã
t¡ 1

2T

T

!
¡¦

Ã
t+ 1

2T

T

!
(3.61)

Using linearity, the shifting theorem and the previous result,

F (º) = T exp

µ
j2¼º

T

2

¶
sinc(ºT )¡ T exp

µ
¡j2¼º

T

2

¶
sinc(ºT ) (3.62)

=
2j

¼º
sin2(¼ºT ) (3.63)



453.701 Linear Systems, S.M. Tan, The University of Auckland 3-10

3.4.3 Triangular pulse

f(t) =

8>>><>>>:
T + t

T
if ¡ T < t < 0

T ¡ t

T
if 0 < t < T

0 otherwise

(3.64)

This is T−1 multiplied by the integral of the previous example. Since the area under the function
in the previous example was zero, we can make use of (3.27) to conclude that

F (º) =
1

j2¼ºT

2j

¼º
sin2(¼ºT ) (3.65)

= T sinc2(ºT ) (3.66)

Alternatively, we see that

f(t) =
1

T
(p ¤ p)(t) (3.67)

where p(t) = ¦(t=T ). Using the convolution theorem,

F (º) =
1

T
[T sinc(ºT )]2 = T sinc2(ºT ) (3.68)

3.4.4 The exponential pulse

f(t) = u(t) exp(¡®t) (3.69)

Substituting into the deÞnition of the Fourier transform,

F (º) =

Z ∞

0
exp[(¡®¡ j2¼º)t] dt (3.70)

=
1

®+ j2¼º
(3.71)

=
®

®2 + 4¼2º2
¡ j

2¼º

®2 + 4¼2º2
(3.72)

=
1p

®2 + 4¼2º2
exp

µ
¡j tan−1

2¼º

®

¶
(3.73)

3.4.5 The Gaussian

f(t) = exp(¡®t2) (3.74)

Substituting into the deÞnition of the Fourier transform,

F (º) =

Z ∞

−∞
exp[¡®t2 ¡ j2¼ºt] dt (3.75)

=

Z ∞

−∞
exp

·
¡®

µ
t2 + j

2¼ºt

®

¶¸
dt (3.76)

Completing the square in the exponential,

F (º) = exp

µ
¡¼2º2

®

¶ Z ∞

−∞
exp

·
¡®

³
t+ j

¼º

®

´2¸
dt (3.77)

= exp

µ
¡¼2º2

®

¶ Z ∞+jπν/α

−∞+jπν/α
exp

¡¡®u2
¢
du (3.78)
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where we have substituted u = t + j¼º=® in the last integral, so that du = dt. It remains to
compute the integral which is a contour integral in the complex plane. To do this, consider the
integral over the following rectangular contour, where R is later going to be taken to 1.Z R+jπν/α

−R+jπν/α
+

Z R

R+jπν/α
+

Z −R

R
+

Z −R+jπν/α

−R
exp

¡¡®u2
¢
du (3.79)

where in each integral, the straight line path between the limits is taken. Since the integrand
is analytic throughout the complex plane, Cauchy�s theorem states that the integral over any
closed contour is zero. As R becomes large, the integrals along the lines [R + j¼º=®;R] and
[¡R;¡R+j¼º=®] become small since the integrand falls off rapidly while the length of the contour
stays Þxed. Hence in the limit as R ! 1, these integrals vanish and we Þnd thatZ ∞+jπν/α

−∞+jπν/α
exp

¡¡®u2
¢
du+

Z −∞

∞
exp

¡¡®u2
¢
du = 0 (3.80)

or Z ∞+jπν/α

−∞+jπν/α
exp

¡¡®u2
¢
du =

Z ∞

−∞
exp

¡¡®u2
¢
du =

r
¼

®
(3.81)

Thus we see that the desired Fourier transform is

F (º) =

r
¼

®
exp

µ
¡¼2º2

®

¶
(3.82)

A convenient way of remembering this result is to apply the scaling property of Fourier transforms
to the special case

exp(¡¼t2) $ exp(¡¼º2) (3.83)

Exercise: Find the Fourier transforms of the following functions. Sketch the functions and (the
real and imaginary parts of) their Fourier transforms.

1. f(t) = exp(¡®jtj)
2. f(t) = ¦(t=n) sin(2¼t)

3. f(t) = t3 exp(¡®t2)

4. f(t) = exp(¡®jtj) cos(¯t)
5. f(t) =

PN
k=−N ¦((t¡ k)=w)

3.5 Convergence of the Dirichlet Integrals

(See T.M. Apostol, Mathematical Analysis for further details.)

In order to show that the inverse Fourier transform formula allows us to recover f(t), we need to
consider the Dirichlet integral (3.6)

lim
M→∞

Z ∞

−∞
f(¿)

sin [2¼M (t¡ ¿)]

¼ (t¡ ¿)
d¿ (3.84)
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The inverse Fourier transform at t converges to the value of this integral. Without loss of generality,
let us just consider the point t = 0. Given ± > 0 we can split the integration into three intervals

lim
M→∞

Z −δ

−∞
f(¿)

sin (2¼M¿)

¼¿
d¿ + lim

M→∞

Z δ

−δ
f(¿)

sin (2¼M¿)

¼¿
d¿ + lim

M→∞

Z ∞

δ
f(¿)

sin (2¼M¿)

¼¿
d¿

(3.85)
In the following, we show that the Þrst and third integrals tend to zero wheras the second integral
tends to f(0) if f is sufficiently well behaved.

3.5.1 The Riemann-Lebesgue lemma

Theorem: If f is absolutely integrable on a general interval (a; b) which may be bounded or
unbounded,

lim
M→∞

Z b

a
f(t) exp(j2¼Mt) dt = 0 (3.86)

Proof: It is a result of integration theory that any absolutely integrable function f can be ap-
proximated arbitrarily accurately by a step function in the sense that for any ² > 0 there is a step
function s(t) such that

1. s(t) vanishes outside some bounded interval, and

2. the absolute difference between s(t) and f(t) satisÞesZ b

a
js(t)¡ f(t)j dt < ² (3.87)

(Note: A function on (a; b) is a step function if there is a partition of (a; b) such that the function
is constant on the open subintervals.)

We Þrst show that the Riemann-Lebesgue lemma holds for a constant function on an arbitrary
interval and hence also for step functions. The relationship (3.87) is then used to extend the result
to all absolutely integrable functions.

1. If f(t) = c is a constant on (a; b),

lim
M→∞

Z b

a
c exp(j2¼Mt) dt = lim

M→∞

·
c
exp(j2¼Mt)

j2¼M

¸b
a

= 0 (3.88)

since the numerator is bounded while the denominator becomes large. Note that this proof
works whether or not the interval is bounded.

2. If f(t) is a step function, it may be expressed as a sum of functions which are constant on
disjoint intervals. The above proof may be applied to each of these disjoint intervals. Since
the overall integral is the sum of the integrals over the intervals, the result is true for step
functions.
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3. Now suppose that f(t) is absolutely integrable and that s(t) is a step function such that (3.87)
holds¯̄̄̄Z b

a
f(t) exp(j2¼Mt) dt

¯̄̄̄
·

¯̄̄̄Z b

a
[f(t)¡ s(t)] exp(j2¼Mt) dt

¯̄̄̄
+

¯̄̄̄Z b

a
s(t) exp(j2¼Mt) dt

¯̄̄̄
·

Z b

a
j[f(t)¡ s(t)] exp(j2¼Mt)jdt+

¯̄̄̄Z b

a
s(t) exp(j2¼Mt) dt

¯̄̄̄
=

Z b

a
jf(t)¡ s(t)jdt+

¯̄̄̄Z b

a
s(t) exp(j2¼Mt) dt

¯̄̄̄
(3.89)

By (3.87) the Þrst integral is less than ² and by the result for step functions the second integral
tends to zero as M ! 1. Since ² can be chosen to be arbitrarily small, we have established
the required result.

From the Riemann-Lebesgue lemma, it is easy to see that for any absolutely integrable function
f(t),

lim
M→∞

Z b

a
f(t) cos(2¼Mt) dt = 0 (3.90)

and

lim
M→∞

Z b

a
f(t) sin(2¼Mt) dt = 0 (3.91)

In equation (3.85), if f(¿) is absolutely integrable, then so is f(¿)=(¼¿) on [±;1) and (¡1;¡±].
Thus, the Riemann-Lebesgue lemma may be applied to the Þrst and third integrals to show that
they tend to zero as M ! 1.

3.5.2 The integral over (¡±; ±) in (3.85)

It can be shown that if f(¿) is continuous and of bounded variation on (¡±; ±), the second integral
in (3.85) tends to f(0). However, this is quite difficult (see Apostol for details).

(Technical note: It is a curious and important result from functional analysis that it is not sufficient
for f to be continuous at 0, i.e., there exists an absolutely integrable function which is continuous
at 0 but whose value at 0 cannot be recovered from an inverse Fourier transform.)

However if f(¿) is differentiable at 0, the result follows quite readily. We may write

lim
M→∞

Z δ

−δ
f(¿)

sin (2¼M¿)

¼¿
d¿ = lim

M→∞

Z δ

−δ
f (¿)¡ f (0)

¼¿
sin(2¼M¿) d¿+f(0) lim

M→∞

Z δ

−δ
sin (2¼M¿)

¼¿
d¿

(3.92)
If f 0(0) exists, the Þrst integral on the right-hand side tends to zero as M ! 1 by the Riemann-
Lebesgue lemma provided ± is sufficiently small. For this value of ±, the second term is

f(0) lim
M→∞

Z δ

−δ
sin (2¼M¿)

¼¿
d¿ =

f (0)

¼

Z ∞

−∞
sinx

x
dx = f(0) (3.93)

This establishes the desired result.

Note:

We have shown that if f is absolutely integrable and differentiable at zero,

lim
M→∞

Z ∞

−∞
f(¿)

sin (2¼M¿)

¼¿
d¿ = f(0) (3.94)
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Thus in particular, for any test function Á (which certainly satisÞes these conditions),

lim
M→∞

¿
sin (2¼M¿)

¼¿
; Á(¿)

À
= Á(0) (3.95)

We may write this as a distributional limit

lim
M→∞

sin (2¼M¿)

¼¿
= ±(¿) (3.96)

3.6 Fourier Transforms of Generalized Functions

We now wish to extend Fourier transform theory to allow us to Þnd the Fourier transforms of
generalized functions or distributions. To do this, it will turn out that we shall always want our
test functions to have invertible Fourier transforms (in the classical sense) and that the Fourier
transform of a test function should always be another test function. Since the Fourier transform of
a function that vanishes outside a bounded interval does not vanish outside a bounded interval, we
cannot use exactly the same set of test functions D that we introduced in the Þrst chapter. Instead
we deÞne a new set of test functions (called open support test functions) D0 as follows:
A function Á is an open support test function if it is inÞnitely differentiable on the real line (i.e.,
it is C∞) and if for all integers k ¸ 0, the kth derivative of Á is rapidly decreasing, i.e., for all
integers N ¸ 0,

tNÁ(k)(t) (3.97)

is bounded for all t.

This means that all derivatives of Á tend to zero more quickly than jtj−N for any N as jtj becomes
large.

Convergence in D0: A sequence of open support test functions fÁn(t)g converges to zero in D0
if for each pair of non-negative integers N and k, the sequence of functions tNÁ(k)n (t) approaches
the zero function uniformly as n ! 1.
Theorem: The Fourier transform of an open support test function is an open support test function.

Proof: Suppose that Á(t) is an open support test function.

1. It is easy to show (e.g. by the comparison test with 1=(1 + t2)) that all rapidly decreasing
functions are absolutely integrable and so the Fourier transform ©(º) exists.

2. In order to show that ©(º) is inÞnitely differentiable, we note that ©(k)(º) is the Fourier trans-
form of (¡j2¼t)kÁ(t). Since Á(t) is rapidly decreasing, (¡j2¼t)kÁ(t) is also rapidly decreasing
and so it has a Fourier transform.

3. In order to show that ©(k)(º) is rapidly decreasing, we need to show that for all non-negative
natural numbers N , ºN©(k)(º) is bounded. This is proportional to the Fourier transform of
theN �th derivative of (¡j2¼t)kÁ(t). Since Á is C∞ and rapidly decreasing, the N �th derivative
of (¡j2¼t)kÁ(t) is also C∞ and rapidly decreasing, which means that its Fourier transform is
bounded for all º.
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An exactly analogous theory of distributions as in the Þrst chapter can be built up using the class
of open support test functions, except that the locally integrable functions are replaced by locally
integrable functions which are slowly increasing. A function f(t) is said to be slowly increasing
if there exists some non-negative integer N such that f(t)=tN ! 0 as jtj ! 1. The distributions
induced by this construction are known as tempered distributions and they form a subset of
the distributions considered in the Þrst chapter.

From this point onwards, a �test function� refers to an open support test function, �generalized
functions� and �distributions� refer to tempered distributions.

3.6.1 DeÞnition of the Fourier transform and its inverse

Let f(t) be a generalized function. The Fourier transform F (º) is also a generalized function whose
action on a test function ©(º) 2 D0 is

hF (º);©(º)i = hf(t); Á(¡t)i (3.98)

where Á is the inverse Fourier transform of ©. By the deÞnition of D0, we know that Á is also a
test function and so the action of f(t) on Á(¡t) is well-deÞned.

Similarly, given a generalized function F (º), the inverse Fourier transform is a generalized function
f(t) whose action on a test function Á(t) 2 D0 is

hf(t); Á(t)i = hF (º);©(¡º)i (3.99)

Theorem: Using the above deÞnitions, if F (º) is the Fourier transform of f(t), then f(t) is the
inverse Fourier transform of F (º).

Proof: Suppose that F (º) is the Fourier transform of f(t) and that g(t) is the inverse Fourier
transform of F (º). Let Á(t) 2 D0 be a test function and ©(º) be its Fourier transform. Using
(3.99), the action of g on Á is

hg(t); Á(t)i = hF (º);©(¡º)i (3.100)

Writing ª(º) = ©(¡º), and using (3.98),

hF (º);ª(º)i = hf(t); Ã(¡t)i (3.101)

where Ã(t) is the inverse Fourier transform of ª(º). Using the symmetry properties of the classical
Fourier transform on the space of test functions we see that

Ã(¡t) $ ª(¡º) = ©(º) $ Á(t) (3.102)

and so Ã(¡t) = Á(t). This shows that hg(t); Á(t)i = hf(t); Á(t)i for all test functions Á and so f = g
distributionally.

Notes:

1. The above deÞnitions show that every generalized function has a Fourier transform which
is another generalized function, and that the inverse Fourier transform always recovers the
original distribution.

2. The duality result that f(t) $ F (º) iff F (t) $ f(¡º) works without exception if we consider
generalized functions.

3. The deÞnitions are consistent with (and motivated by) Parseval�s theorem and so the classical
Fourier transform of a generalized function which is in fact a well-behaved �ordinary� function
is also a distributional Fourier transform in the above sense.
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3.7 Examples of Fourier transforms of generalized functions

3.7.1 The delta function

If we substitute f(t) = ±(t) into the deÞnition of the Fourier transform (3.1) and carry out the
formal operation of setting t = 0 in the exponential (ignoring the fact that exp(¡j2¼ºt) is not in
the class of test functions D0), we might expect that F (º) = 1. Let us now see how this is made
rigorous through the use of (3.98).

According to the deÞnition, F (º) is a generalized function. It is well-deÞned provided that we can
specify its action on a test function ©(º). Using the deÞnition,

hF (º);©(º)i = h±(t); Á(¡t)i (3.103)

= Á(0) =

Z ∞

−∞
©(º) dº = h1;©(º)i (3.104)

Since this is true for all © 2 D0, F (º) = 1 distributionally.

Similarly, if f(t) = ±(t¡ T ),

hF (º);©(º)i = h±(t¡ T ); Á(¡t)i (3.105)

= Á(¡T ) =

Z ∞

−∞
©(º) exp[j2¼º(¡T )] dº = hexp(¡j2¼ºT );©(º)i (3.106)

Hence we may write the Fourier transform pair

±(t¡ T ) $ exp(¡j2¼ºT ) (3.107)

Exercise: Show using (3.98) that if g(t) = f(t ¡ T ) then G(º) = F (º) exp(¡j2¼ºT ) so that the
above is a special case of this relationship.

3.7.2 The complex exponential

By duality we expect the Fourier transform of f(t) = exp(j2¼º0t) to be ±(º ¡ º0). We can also see
this directly since for any test function ©,

hF (º);©(º)i = hexp(j2¼º0t); Á(¡t)i (3.108)

=

Z ∞

−∞
exp(j2¼º0t)Á(¡t) dt = ©(º0) = h±(º ¡ º0);©(º)i (3.109)

In this case, if we had formally substituted f(t) into the original deÞnition of the Fourier transform,
we would have obtained

F (º) =

Z ∞

−∞
exp(j2¼(º0 ¡ º)t) dt

This improper integral does not have a limit in the usual sense. However, on the basis of the above,
we may formally write Z ∞

−∞
exp(j2¼(º0 ¡ º)t) dt = ±(º ¡ º0)

provided that this is understood in the distributional sense.
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3.7.3 Cosine and sine

By writing the cosine and sine functions in terms of complex exponentials we see that

1. cos(2¼º0t) $ 1

2
[±(º ¡ º0) + ±(º + º0)]

2. sin(2¼º0t) $ 1

2j
[±(º ¡ º0)¡ ±(º + º0)]

Note that the cosine function is real and even and so its Fourier transform is Hermitian and even
(and consequently real). On the other hand, the sine function is real and odd and so its Fourier
transform is Hermitian and odd (and consequently purely imaginary).

3.7.4 The signum function

This is deÞned by

sgn t =

½
1 if t > 0
¡1 if t < 0

(3.110)

One way of calculating the Fourier transform of this function is by considering it as the (distribu-
tional) limit of a sequence of functions. This relies on the following theorem:

Theorem: If ffkg is a convergent sequence of generalized functions which converge to the gen-
eralized function f , then the sequence of Fourier transforms fFkg converge distributionally to the
Fourier transform F of f .

Proof: Do as an exercise using the deÞnitions of Fourier transforms and limits of generalized
functions.

Consider the sequence of functions

fk(t) =

½
exp(¡t=k) if t > 0
¡ exp(t=k) if t < 0

(3.111)

As k ! 1 it is easy to see that this tends to sgn t pointwise and distributionally. For each k, fk(t)
is absolutely integrable and so its Fourier transform exists as an ordinary function

Fk(º) =
1

j2¼º + k−1
¡ 1

j2¼ (¡º) + k−1
(3.112)

= ¡ j4¼º

k−2 + 4¼2º2
(3.113)

As k ! 1 this tends to 1=(j¼º). Thus we have the transform pair

sgn t $ 1

j¼º
(3.114)

3.7.5 The unit step � Fourier transform of an integral

Since the unit step u(t) may be written in terms of the signum function

u(t) =
1

2
(sgn(t) + 1) (3.115)
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we may use linearity and the previous result to obtain the Fourier transform pair

u(t) $ 1

j2¼º
+

1

2
±(º) (3.116)

Exercise: Consider the sequence of functions fk(t) = u(t) exp(¡t=k) which tends distributionally
to u(t) as k ! 1. Calculate Fk(º) and show that these tend distributionally to the Fourier
transform of u(t). Hint: Consider the real and imaginary parts of Fk(º) separately.
(Technical note: This shows that pointwise convergence does not imply distributional convergence.)

Recall that given a function f(t), the integral function

g(t) =

Z t

−∞
f(¿) d¿ (3.117)

can be written as the convolution (f ¤ u)(t). By the convolution theorem and the above result, the
Fourier transform of g(t) is

G(º) = F (º)

µ
1

j2¼º
+

1

2
±(º)

¶
=

F (º)

j2¼º
+

1

2
F (0)±(º) (3.118)

This is the promised generalization of (3.27) which is required when F (0) is non-zero.

Exercise: What are the Fourier transforms of sgn t cos(2¼º0t), u(t) sin(2¼º0t) and of tk?


