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Chapter 4 Sampling in Frequency and Time

4.1 Introduction

As a major application of using Fourier transforms of generalized functions, we consider the prob-
lems of Fourier series and of representing a continuous waveform by uniformly sampling it in time.
Fourier series are used in the analysis of periodic waveforms while sampling theory is important
in computer-aided processing of sampled physical data (other applications include compact disc
players, digital audio etc.) Rather surprisingly, these topics are related and the theory is based on
Þnding the Fourier transform of a train of delta functions.

4.2 Fourier transform of a train of delta functions

4.2.1 A train of 2N + 1 delta functions

Consider the generalized function consisting of 2N +1 equally-spaced delta functions separated by
time T

fN(t) =
NX

k=−N
±(t¡ kT ) (4.1)

The Fourier transform is found directly via linearity and the result for the Fourier transform of a
single delta function

FN (º) =
NX

k=−N
exp(¡j2¼ºkT ) (4.2)

=
sin

£
2¼

¡
N + 1

2

¢
ºT

¤
sin (¼ºT )

(4.3)

where we have summed the geometric series and written the complex exponential in trigonometric
form. We note that

1. This is a �periodic� function (in º) with period 1=T

2. The major peaks are at k=T for integer k and the heights of the peaks are 2N + 1.

3. The zeros of the function are at º = k=[(2N + 1)T ] where k is any integer not divisible by
2N + 1.

4.2.2 An inÞnite train of delta functions

Let us now consider what happens as N ! 1. The sequence fN(t) tends in the distributional
sense to

f(t) =
∞X

k=−∞
±(t¡ kT ) (4.4)
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You should check that this distributional limit does in fact hold by considering the action on a test
function in D0. Note that the deÞnition of D0 ensures that all results are well-deÞned and never
inÞnite.

The Fourier transform of f(t) is then the distributional limit of FN (º). Since FN is periodic with
period 1=T for every value of N , this periodicity is shared by the limit F . It thus suffices to consider
a single period from ¡1=(2T ) to 1=(2T ).

We look at the action of FN (º) on a test function ©(º) in the interval ¡1=(2T ) to 1=(2T ), i.e.,Z 1/(2T )

−1/(2T )

sin
£
2¼

¡
N + 1

2

¢
ºT

¤
sin (¼ºT )

©(º) dº (4.5)

The denominator is nonzero except at º = 0. Thus as N ! 1, the Riemann-Lebesgue lemma
ensures that the contribution to the integral vanishes except within a small interval (¡±; ±) around
º = 0. Since the test function is assumed to be differentiable at zero, there is a neighbourhood in
which its value is not appreciably different from ©(0). The integral may be approximated by

©(0) lim
N→∞

Z δ

−δ

sin
£
2¼

¡
N + 1

2

¢
ºT

¤
sin (¼ºT )

= ©(0) lim
N→∞

1

(2N + 1)¼T

Z (2N+1)πTδ

−(2N+1)πTδ
sinu

sin [u= (2N + 1)]
du

(4.6)
AsN becomes large, we may approximate sin[u=(2N+1)] by u=(2N+1). Since

R∞
−∞ sin(u)=udu = ¼,

the result is ©(0)=T .

Thus within the interval ¡1=(2T ) to 1=(2T ), FN(º) ! ±(º)=T . Using the periodicity of FN (º), we
obtain the transform pair

∞X
k=−∞

±(t¡ kT ) $ 1

T

∞X
k=−∞

±

µ
º ¡ k

T

¶
(4.7)

Thus the Fourier transform of an inÞnite train of delta functions is also an inÞnite train of delta
functions. The spacing in º space is the reciprocal of the spacing in t space.

4.3 The Fourier transform of a periodic signal

Consider a function fp(t) which is periodic with period T . DeÞne f(t) to be a single period of fp(t)
and which is zero outside the range [¡T=2; T=2], i.e.,

f(t) =

½
fp(t) if ¡ T=2 < t < T=2
0 otherwise

(4.8)

We see that fp(t) may be regarded as the convolution of f with an inÞnite train of delta functions

fp(t) =
∞X

k=−∞
f(t¡ kT ) = (f ¤ h)(t) (4.9)

where

h(t) =
∞X

k=−∞
±(t¡ kT ) (4.10)
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Taking the Fourier transform and using the convolution theorem

Fp(º) = F (º)H(º) =
1

T
F (º)

∞X
k=−∞

±

µ
º ¡ k

T

¶
(4.11)

=
1

T

∞X
k=−∞

F

µ
k

T

¶
±

µ
º ¡ k

T

¶
(4.12)

Thus the spectrum of fp(t) consists of discrete components at multiples of 1=T . The component of
the periodic signal at frequency 1=T is called the fundamental and that at frequency k=T is called
the k�th harmonic. We see that this harmonic relationship is a consequence of the periodicity of
the original signal.

Let us now consider the form of the inverse Fourier transform which recovers fp(t) from Fp(º):

fp(t) =

Z ∞

−∞
Fp(º) exp(j2¼ºt) dº (4.13)

=

Z ∞

−∞
1

T

∞X
k=−∞

F

µ
k

T

¶
±

µ
º ¡ k

T

¶
exp(j2¼ºt) dº (4.14)

=
∞X

k=−∞

1

T
F

µ
k

T

¶
exp

µ
j2¼

k

T
t

¶
(4.15)

=
∞X

k=−∞
ck exp

µ
j2¼

k

T
t

¶
(4.16)

where

ck =
1

T
F

µ
k

T

¶
(4.17)

=
1

T

Z T/2

−T/2
f(t) exp

µ
¡j2¼

k

T
t

¶
dt (4.18)

where we have used the fact that f(t) vanishes outside [¡T=2; T=2].

We recognize (4.16) as a Fourier series and (4.18) as the equations for the coefficients. By using
the theory of generalized functions, we see that Fourier series can be recovered naturally from the
theory of Fourier transforms.

Example: Find the Fourier series for fp(t) which is periodic of period T and which is deÞned
within [¡T=2; T=2] by

fp(t) = 1¡ 2 jtj
T

if ¡ T

2
< t <

T

2
(4.19)

The function f(t) is deÞned by

f(t) =

½
1¡ 2|t|

T if ¡ T
2 < t < T

2
0 otherwise

(4.20)

The Fourier transform of f(t) is

F (º) =
T

2
sinc2

µ
ºT

2

¶
(4.21)
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The coefficients of the Fourier series are thus

ck =
1

T
F

µ
k

T

¶
(4.22)

=
1

2
sinc2

µ
k

2

¶
(4.23)

=

8><>:
1
2 if k = 0
2

¼2k2
if k is odd

0 otherwise

(4.24)

The Fourier series is thus

fp(t) =
1

2
+

∞X
n=1

4

¼2(2n¡ 1)2
cos

µ
2¼ (2n¡ 1) t

T

¶
(4.25)

Note that if we set t = 0, we Þnd that

1 +
1

32
+

1

52
+

1

72
+ ::: =

¼2

8
(4.26)

Exercises:

1. Use this to show that

1 +
1

22
+

1

32
+

1

42
+ ::: =

¼2

6
(4.27)

This is the value of the Riemann-zeta function at 2; denoted by ³ (2) :

2. Find the Fourier series of the following functions which are periodic of period T

gp(t) =
t

T
if 0 < t < T (4.28)

hp(t) =

½
1 if jtj < T=4
0 if T=4 < jtj < T=2

(4.29)

4.4 Sampling in time

Often a function is known only by its values at particular (usually equally spaced) times. This is the
case when we regularly sample a continuous-time waveform (e.g. digitized music). Mathematically
we may represent this process of sampling at equally spaced points in time as multiplying the
continuous-time function f(t) by a train of delta functions to give a new (generalized) function
fs(t).

fs(t) = f(t)
∞X

k=−∞
±(t¡ kT ) =

∞X
k=−∞

f(kT )±(t¡ kT ) (4.30)

The second form shows explicitly that the values of f between sampling instants do not affect fs(t).
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Corresponding to this product in the time domain, the spectrum F (º) of f(t) is convolved by the
spectrum of the train of delta functions. Using the transform pair

∞X
k=−∞

±(t¡ kT ) $ 1

T

∞X
k=−∞

±

µ
º ¡ k

T

¶
(4.31)

we see that the Fourier transform Fs(º) of fs(t) is the convolution

Fs(º) = F (º) ¤ 1

T

∞X
k=−∞

±

µ
º ¡ k

T

¶
(4.32)

=
1

T

∞X
k=−∞

F

µ
º ¡ k

T

¶
(4.33)

The resulting spectrum now spans an inÞnite range of frequencies with repetitions of the original
spectrum every ºs = 1=T apart.

If the original spectrum of f(t) is band-limited to §ºc and if ºc < 1
2ºs, the repetitions of the spectra

will not overlap and we can recover the original spectrum F (º) from Fs(º).

On the other hand, if if ºc > 1
2ºs, the repetitions of the spectra will overlap and the original

spectrum is lost.

This tells us how rapidly we need to sample a waveform in order to allow the continuous-time
waveform from the samples. These considerations are made precise in the following section.

4.5 The sampling theorem

If a function f(t) is band limited so that its Fourier transform F (º) vanishes for jºj ¸ ºc,
then f(t) can be completely reconstructed from its values sampled at intervals of T provided that
ºs = T−1 ¸ 2ºc.

Proof: The set of samples of f(t) taken with a sampling interval of T can be represented by the
function fs(t) as deÞned by (4.30). The spectrum Fs(º) is given by (4.33). If T−1 ¸ 2ºc, the copies
of the spectrum do not overlap and it is possible to recover the original spectrum F (º) from Fs(º)
via

F (º) = TFs(º)¦ (ºT ) (4.34)

By calculating the inverse Fourier transform of this relationship, we can recover f(t) from fs(t).
Using the transform pair

sinc

µ
t

T

¶
$ T¦(ºT ) (4.35)

we Þnd that

f(t) = fs(t) ¤ sinc
µ

t

T

¶
(4.36)

=

Z ∞

−∞
fs(¿) sinc

µ
t¡ ¿

T

¶
d¿ (4.37)
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Substituting the expression for fs(¿) as a sum of delta functions,

f(t) =

Z ∞

−∞

Ã ∞X
k=−∞

f (kT ) ± (¿ ¡ kT )

!
sinc

µ
t¡ ¿

T

¶
d¿ (4.38)

=
∞X

k=−∞
f(kT ) sinc

µ
t¡ kT

T

¶
(4.39)

This is the desired formula which expresses f(t) for any time t in terms of the values of f at the
sample instants kT .

1. The reconstructed value of f(t) is a weighted mean of all the sample values f(kT ). The
weight associated with those samples which are far away from t decreases according to the
sinc function. If t happens to be a multiple of T the sinc function has a weight of one at that
sample point and zero for all other samples.

2. In the frequency domain, the reconstruction of f(t) from fs(t) involves an ideal low-pass Þl-
tering which removes all frequencies above half the sampling frequency. The impulse response
of such an ideal low-pass Þlter is a sinc function, indicating that the Þlter is non-causal. In
practice, we can only do this Þltering approximately. Compact disc players use a combination
of digital and analogue techniques (oversampling by digital interpolation followed by analogue
postÞltering) to do this reconstruction.

3. The highest frequency which can be reconstructed from its samples using (4.39) is 1
2ºs =

1=(2T ). This is called the Nyquist frequency. When digitizing a signal, all frequencies
outside the Nyquist frequency band (¡1

2ºs;
1
2ºs) must be removed (using an analogue Þlter)

before the digitization. If this is not done, any frequency components º outside the Nyquist
frequency band (i.e., jºj > 1

2ºs) will reappear in the reconstruction at a frequency º + mºs
where m is an integer such that jº +mºsj · 1

2ºs. This phenomenon is called aliasing.

4. Aliasing can sometimes be usefully employed to make one frequency appear like another. It
is the principle used by the stroboscope in which a system is sampled at such a rate that its
motion is apparently slowed down or �frozen� (e.g., the angular frequency of a rotating shaft
is aliased to zero frequency) by the sampling.

5. Equation (4.39) can be interpreted as saying that a band limited signal can be written as a
linear combination of sinc functions. Thus the (countable) family of functions½

sinc

µ
t¡ kT

T

¶¾∞
k=−∞

(4.40)

may be regarded as a set of basis functions for the space of bandlimited functions whose
spectra vanish outside (¡1=(2T ); 1=(2T )).

Exercise:

1. Show that these basis functions are orthogonal. In fact,Z ∞

−∞
sinc

µ
t¡mT

T

¶
sinc

µ
t¡ nT

T

¶
dt = T ±mn (4.41)
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Hence show that for bandlimited functions f(t) and g(t) such that F (º) = 0 and G(º) = 0
for jºj ¸ 1=(2T ), Z ∞

−∞
f∗(t)g(t) dt = T

∞X
k=−∞

f∗(kT )g(kT ) (4.42)

assuming that the appropriate integrals and sums converge. Thus we can calculate inner
products of bandlimited signals in terms of their sampled values.

2. Instead of ideal reconstruction of a sampled signal by means of convolution with a sinc func-
tion, reconstruction using a zero-order hold is commonly used. This involves holding the
value of the signal constant at the value of the last sample until the next sample arrives so
that if f(kT ) are the sample values, the reconstruction using zero-order hold is

fZOH(t) = f(kT ) for kT · t < (k + 1)T (4.43)

Show that fZOH(t) is related to fs(t) via a convolutional relationship and hence calculate the
spectrum FZOH(º) of the reconstruction.

4.6 Bernstein�s Theorem

If f(t) is a bounded, bandlimited function, i.e.,

1. There exists fmax such that jf(t)j · fmax for all t, and

2. There exists ºmax such that the Fourier transform F (º) of f(t) vanishes for jºj > ºmax.

then
jf 0(t)j · 2¼ºmaxfmax for all t (4.44)

This is a quantitative expression of the idea that bandlimited functions cannot change too quickly.
The function cos(2¼ºmaxt+ Á) shows that the bound is achieved.

Proof:

The sampling theorem shows that for T = 1=(2ºmax) and for any ¿ we can write

f(t) =
∞X

k=−∞
f(kT + ¿) sinc

µ
t¡ ¿ ¡ kT

T

¶
(4.45)

(if this is not obvious, consider the bandlimited function g(t) = f(t+ ¿) and write Eq. 4.39 for this
function).

The derivative of this is

f 0(t) =
1

T

∞X
k=−∞

f(kT + ¿) sinc0
µ
t¡ ¿ ¡ kT

T

¶
(4.46)

where sinc0(x) = [¼x cos(¼x)¡ sin(¼x)]=(¼x2). Notice how we have expressed the derivative of f
in terms of equally-spaced samples of f itself.
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We now choose ¿ = t+ 1
2T . With this choice

f 0(t) =
1

T

∞X
k=−∞

f
¡
t+ kT + 1

2T
¢
sinc0

¡¡k ¡ 1
2

¢
(4.47)

and so

jf 0(t)j · 1

T

∞X
k=−∞

¯̄
f
¡
t+ kT + 1

2T
¢¯̄ ¯̄

sinc0
¡¡k ¡ 1

2

¢¯̄
(4.48)

· fmax
T

∞X
k=−∞

¯̄
sinc0

¡¡k ¡ 1
2

¢¯̄
(4.49)

But ∞X
k=−∞

¯̄
sinc0

¡¡k ¡ 1
2

¢¯̄
=

1

¼

∞X
k=−∞

¡
k + 1

2

¢−2
=

4

¼

∞X
k=−∞

1

(2k + 1)2
= ¼ (4.50)

where we have used the sum in Eq. (4.26).

Hence
jf 0(t)j · ¼

T
fmax = 2¼ºmaxfmax (4.51)

4.7 The discrete-time Fourier transform

We have seen in (4.33) that the Fourier transform Fs(º) of a sampled function

fs(t) =
∞X

k=−∞
f(kT )±(t¡ kT ) (4.52)

can be written as a convolution of F (º) with a train of delta functions. We may alternatively
calculate the Fourier transform of fs(t) directly by substituting it into the deÞnition. This yields

Fs(º) =

Z ∞

−∞

∞X
k=−∞

f(kT )±(t¡ kT ) exp(¡j2¼ºt) dt (4.53)

=
∞X

k=−∞
f(kT ) exp(¡j2¼ºkT ) (4.54)

Instead of regarding f(kT ) as a sampled version of some continuous-time function f(t), we may
think of them simply as a sequence of numbers. This leads to the deÞnition

DeÞnition: The discrete-time Fourier transform (DTFT) maps a sequence of numbers fx[k]g
for integer k into a continuous function X(−) deÞned by

X(−) =
∞X

k=−∞
x[k] exp(¡j−k) (4.55)

The function X(−) is periodic with period 2¼. The inverse discrete-time Fourier transform rela-
tionship is

x[k] =
1

2¼

Z π

−π
X(−) exp(j−k) d− (4.56)
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Proof: Substituting the expression for X(−) into (4.56) yields

1

2¼

Z π

−π

∞X
n=−∞

x[n] exp(¡j−n) exp(j−k) d− =
1

2¼

∞X
n=−∞

x[n]

Z π

−π
exp[j−(k ¡ n)] d− (4.57)

=
1

2¼

∞X
n=−∞

2¼ sinc(k ¡ n)x[n] (4.58)

= x[k] (4.59)

Exercises:

1. If the sequence x[k] does happen to come from sampling a bandlimited signal, i.e., x[k] =
f(kT ), show that we can recover the inverse DTFT relationship (4.56) from the usual inverse
Fourier transform together with the relationship (4.34).

2. Show that the DTFT of the sequence

x[k] = exp(¡®jkj) (4.60)

is

X(−) =
1¡ e−2α

1¡ 2e−α cos−+ e−2α
(4.61)

3. Use the inverse DTFT relationship (4.56) to recover x[k] from (4.61).


