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Chapter 9 The Discrete Fourier transform

9.1 DeÞnition

When computing spectra on a computer it is not possible to carry out the integrals involved in
the continuous time Fourier transform. Instead a related transform called the discrete Fourier
transform is used. We shall examine the properties of this transform and its relationship to the
continuous time Fourier transform.

The discrete Fourier transform (also known as the Þnite Fourier transform) relates two Þnite se-
quences of length N . Given a sequence with components x[k] for k = 0; 1; :::; N ¡ 1, the discrete
Fourier transform of this sequence is a sequence X[r] for r = 0; 1; :::; N ¡ 1 deÞned by

X[r] =
1

N

N−1X
k=0

x[k] exp

µ
¡ j2¼rk

N

¶
(9.1)

The corresponding inverse transform is

x[k] =
N−1X
r=0

X[r] exp

µ
j2¼rk
N

¶
(9.2)

Notice that we shall adopt the deÞnition in which there is a factor of 1=N in front of the forward
transform. Other conventions place this factor in front of the inverse transform (this is used by
MatLab) or a factor of 1=

p
N in front of both transforms.

Exercise: Show that these relationships are indeed inverses of each other. It is useful Þrst to
establish the relationship

N−1X
r=0

exp

µ
j2¼rk
N

¶
=

½
N if k is a multiple of N
0 otherwise

(9.3)

9.2 Discrete Fourier transform of a sampled complex exponential

A common application of the discrete Fourier transform is to Þnd sinusoidal components within a
signal. The continuous Fourier transform of exp(j2¼º0t) is simply a delta function ±(º ¡ º0) at the
frequency º0. We now calculate the discrete Fourier transform of a sampled complex exponential

x[k] = A exp (j2¼º0k¿) ; for k = 0; 1; : : : ; N ¡ 1 (9.4)

The sampling interval is ¿ and we denote the duration of the entire sampled signal by T = N¿ .

Substituting (9.4) into the deÞnition of the discrete Fourier transform (9.1) yields

X[r] =
1

N

N−1X
k=0

A exp

µ
j
2¼k

N

¶
[º0T ¡ r] (9.5)

If º0T is an integer, i.e., if there are an integer number of cycles in the frame of duration T , we see
that

X[r] =

½
A if r ¡ º0T is a multiple of N
0 otherwise

(9.6)
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In this case, there is only a single non-zero term in the discrete Fourier transform at an index which
depends on the frequency º0. The value of this non-zero term is A, the complex amplitude of the
component.

If º0T is not an integer however, we Þnd that

X[r] =
A

N
exp (¡j¼(N ¡ 1)(r ¡ º0T )=N)

sin[¼(r ¡ º0T )]

sin[¼(r ¡ º0T )=N ]
(9.7)

This is nonzero for all values of r. Thus even though there is only a single frequency component in
the signal, it can affect all the terms in the discrete Fourier transform.

A plot of the last factor in the equation (9.7) is shown in Figure 9.1. Since r only takes on integer
values, the terms in the output sequence are samples from this function taken at unit spacing.
Unless the centre of the function at º0T coincides with an integer, all samples will be non-zero.
The sidelobes of the underlying �circular sinc� function cause the single frequency component to
be smeared out into adjacent samples. This phenomenon is known as �spectral leakage�.

Figure 9.1 Values of discrete Fourier transform of a complex exponential when º0T is not an integer.
Crosses show values of sin [¼ (r ¡ º0T )] = sin [¼ (r ¡ º0T ) =N ] for integer values of r:

Note that if N is large and we are considering those components for which r ¡ º0T ¿ N , we can
approximate sin[¼(r ¡ º0T )=N ] by ¼(r ¡ º0T )=N and (N ¡ 1)=N ¼ 1 so that (9.7) becomes

X[r] ¼ A exp (¡j¼(r ¡ º0T )) sinc(r ¡ º0T ) (9.8)

9.3 Sinusoidal and Cosinusoidal components

Suppose that we have

x[k] = A cos

µ
2¼mk

N

¶
for k = 0; 1; : : : ; N ¡ 1 (9.9)

where m is an integer lying between 1 and N=2¡ 1 so that there are m cycles within the sequence
of length N . Writing this in terms of complex exponentials, we have

x[k] =
1

2
A exp

µ
j2¼mk

N

¶
+

1

2
A exp

µ¡j2¼mk

N

¶
(9.10)
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Taking the discrete Fourier transform of this leads to two nonzero terms in X[r]. The Þrst occurs at
r = m and is of amplitude A=2 corresponding to the Þrst complex exponential whereas the second
is at r = N ¡m since

X[N ¡m] =
1

N

N−1X
k=0

·
1

2
A exp

µ
j2¼mk

N

¶
+

1

2
A exp

µ¡j2¼mk

N

¶¸
exp

µ¡j2¼(N ¡m)k

N

¶

=
A

2N

N−1X
k=0

·
exp

µ
j2¼mk

N

¶
+ exp

µ¡j2¼mk

N

¶¸
exp

µ
j2¼mk

N

¶

=
A

2N

N−1X
k=0

·
exp

µ
j4¼mk

N

¶
+ 1

¸
=

A

2
(9.11)

Similarly if

x[k] = B sin

µ
2¼mk

N

¶
for k = 0; 1; : : : ; N ¡ 1 (9.12)

it is easy to show that there are again two nonzero elements in X[r], namely

X[r] =

8<:
¡jB=2 if r = m
jB=2 if r = N ¡m
0 otherwise

(9.13)

We can interpretX[1] throughX[N=2] as representing positive frequencies whileX[N=2+1] through
X[N ¡ 1] represent negative frequencies.

So if

f(t) = A0 +A1 cos(!0t) +A2 cos(2!0t) + :::AN/2 cos(N!0t=2)+

B1 sin(!0t) +B2 sin(2!0t) + :::BN/2−1 cos((N=2¡ 1)!0t) (9.14)

where !0 = 2¼=T and x[k] = f [kT=N ] for k = 0; 1; :::; N ¡ 1, the discrete Fourier transform X[r]
satisÞes

X0 = A0

X1 =
1

2
(A1 ¡ jB1) XN−1 =

1

2
(A1 + jB1)

...

XN/2 = AN/2

9.4 Relationship to the continuous time Fourier transform

There are two distinct but related ways of expressing the discrete Fourier transform to the contin-
uous time Fourier transform. In the Þrst approach, starting with the sequence with terms x[k] for
k = 0; 1; :::; N ¡ 1 we deÞne the function

xc(t) =
N−1X
k=0

x[k]±(t¡ k¿) (9.15)
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where ¿ is the sampling interval. The continuous time Fourier transform of xc(t) is given by

Xc(º) =

Z ∞

−∞

N−1X
k=0

x[k]±(t¡ k¿) exp(¡j2¼ºt)dt

=
N−1X
k=0

x[k] exp(¡j2¼ºk¿) (9.16)

Xc(º) is periodic with period 1=¿ . Comparing this with the deÞnition of the discrete Fourier
transform we see that

X[r] =
1

N
Xc

³ r

N¿

´
(9.17)

So in this approach the discrete Fourier transform is interpreted as a sampled version of the con-
tinuous Fourier transform of xc(t).

In the alternative view, we consider the continuous time signal which is the inÞnite periodic exten-
sion of xc(t), i.e.,

xp(t) =
∞X

k=−∞
x[k mod N ]±(t¡ k¿) (9.18)

where k mod N denotes the non-negative remainder when k is divided by N . Since xp(t) is the
convolution of xc(t) with

P
r ±(t¡ rN¿), the Fourier transform of xp(t) is

Xp(º) = Xc(º)£ 1

N¿

∞X
r=−∞

±
³
º ¡ r

N¿

´
=

1

N¿

∞X
r=−∞

Xc

³ r

N¿

´
±
³
º ¡ r

N¿

´
=

1

¿

∞X
r=−∞

X[r mod N ]±
³
º ¡ r

N¿

´
(9.19)

In this alternative approach, the terms in the discrete Fourier transform are seen to give the areas
of the delta functions in Xp(º). This picture has the advantage of symmetry between the time and
frequency domains since the functions xp(t) and Xp(º) are each sampled and periodic. In particular

In the time domain, the sampling interval is ¿ and the function repeats
every N¿

In the frequency domain, the sampling interval is 1= (N¿) and the function repeats
every 1=¿

This reciprocal relationship between the sampling in the time and frequency spaces of the discrete
Fourier transform is very useful and should be memorized.

If x[k] originally comes from sampling a continuous signal x(t), i.e., x[k] = x(k¿), it is easy to relate
xc(t) to x(t) since

xc(t) =
N−1X
k=0

x(k¿)±(t¡ k¿)

= x(t)£¦

µ
t¡ (N ¡ 1)¿=2

N¿

¶
£

∞X
k=−∞

±(t¡ k¿)
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The Fourier transform of this thus involves two convolutions

Xc(º) = X(º) ¤ T sinc(ºT ) exp(¡j¼(N ¡ 1)ºT=N) ¤ 1

¿

∞X
k=−∞

±

µ
º ¡ k

¿

¶
(9.20)

where T = N¿ . The Þrst convolution is responsible for the spectral leakage whereas the second is
responsible for aliasing.

We see that spectral leakage arises from taking the Fourier transform of a rectangular window
¦
³
t−(N−1)τ/2

Nτ

´
which multiplies the original function x(t). In the frequency domain, its effect is to

convolve the true spectrum with a sinc function which has relatively large sidelobes. It is possible to
reduce the spectral leakage considerably by introducing a non-rectangular window function which
has a Fourier transform with small sidelobes. For example, the Hanning window is deÞned on
[0; N¿ ] by

h(t) =

8<: 1¡ cos

µ
2¼t

N¿

¶
if 0 < t < N¿

0 otherwise
(9.21)

The Fourier transform of the Hanning window and the rectangular window are shown in Figure 9.2.
For the purposes of drawing the graph, each window is shifted so that it is an real even function
which leads to a real even Fourier transform. The sidelobes of the Hanning window are much
smaller than those of the rectangular window although its central peak is somewhat wider. In
order to use a Hanning window, it is only necessary to deÞne the sequence x[k] whose discrete
Fourier transform we compute by

x[k] = h(k¿)x(k¿) = (1¡ cos (2¼k=N))x(k¿) (9.22)

Most digital spectrum analyzers have the option of selecting some form of window to reduce spectral
leakage.

Figure 9.2 Fourier transform of a rectangular window and a Hanning window showing the reduction
of spectral leakage with the Hanning window
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9.5 The fast Fourier transform (FFT) algorithm

The discrete Fourier transform of a sequence of N points requires O(N2) arithmetic operations to
compute if a straightforward implementation of its deÞnition is carried out. For large N , this can
become prohibitive. In 1965, Cooley and Tukey rediscovered (it was previously used by Gauss and
Runge) a very efficient way of calculating the discrete Fourier transform which involves O(N logN)
operations. This is known as the fast Fourier transform (FFT) algorithm.

Many variants of the FFT algorithm exist. We shall discuss the simplest form known as the
decimation in time algorithm. The central insight which leads to this algorithm is the realization
that a discrete Fourier transform of a sequence of N points can be written in terms of two discrete
Fourier transforms of length N=2. Thus if N is a power of two, it is possible to recursively apply
this decomposition until we are left with discrete Fourier transforms of single points.

Consider an unnormalized discrete Fourier transform of N points which we can write as

X[r] =
N−1X
k=0

x[k]W−rk
N (9.23)

where WN = exp(j2¼=N). The normalization factor 1=N can always be applied at the end of the
algorithm

We split the sum into terms with even indices and with odd indices yielding

X[r] =

N/2−1X
k=0

x[2k]W−2rk
N +

N/2−1X
k=0

x[2k + 1]W
−r(2k+1)
N (9.24)

Using the fact that W 2
N = WN/2, we may write this as

X[r] =

N/2−1X
k=0

x[2k]W−rk
N/2 +W−r

N

N/2−1X
k=0

x[2k + 1]W−rk
N/2

= A[r] +W−r
N B[r] (9.25)

where A[r] is the N=2 point Fourier transform of the even terms of x and Br is the N=2 point
Fourier transform of the odd terms of x. The above result is valid for r = 0; 1; :::; N=2¡ 1. In order
to obtain the rest of X we note that

X[r +N=2] =

N/2−1X
k=0

x[2k]W
−(r+N/2)k
N/2 +W

−(r+N/2)
N

N/2−1X
k=0

x[2k + 1]W
−(r+N/2)k
N/2

=

N/2−1X
k=0

x[2k]W−rk
N/2 ¡W−r

N

N/2−1X
k=0

x[2k + 1]W−rk
N/2

= A[r]¡W r
NB[r] (9.26)

Equations (9.25) and (9.26) express the N point FFT of x[k] in terms of two FFTs of length N=2.

Consider the calculation for the situation in which N = 8. The diagram in Figure 9.3 is called a
�butterßy diagram� and it shows the ßow of data through the algorithm. Starting at the right,
notice how the terms X[0] through X[3] are calculated from A[r] and B[r] via the relationship
(9.25). Similarly, X[4] through X[7] are calculated from A[r] and B[r] via the relationship (9.26).
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Figure 9.3 Butterßy diagram for N = 8 fast Fourier transform
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A[r] is the sequence which is the fast Fourier transform of the even terms of x[k] namely a[k] =
fx[0]; x[2]; x[4]; x[6]g. Similarly, B[r] is the sequence which is the fast Fourier transform of the odd
terms of x[k] namely b[k] = fx[1]; x[3]; x[5]; x[7]g.
We can similarly express A[r] and B[r] in terms of fast Fourier transforms of length 2. Moving to
the left in the diagram, we have denoted by C[r] and D[r] the two point Fourier transforms that
contribute to A[r]. We see that C[r] is the Fourier transform of the even points of a[k] which are
a[0] = x[0] and a[2] = x[4]. These are the �even of evens� of the sequence x[k]. Similarly D[r] is
the Fourier transform of the odd points of a[k] or the �odds of evens� of the sequence x[k]. These
are a[1] = x[2] and a[3] = x[6]. These two point transforms are Þnally expressed as sums and
differences of the single point transforms which are the original data.

All calculations can be done in-place if the original data is shuffled into the correct order initially.
If we look at the binary form of the indices of the data points, it is clear that the data must
be arranged in bit-reversed order. The complex exponentials required in the calculation may be
precomputed and accessed by table lookup in order to speed up the algorithm.

In the straightforward implementation of the discrete Fourier transform, there are N2 complex
multiplications and N2 complex additions. In the fast Fourier transform algorithm, there are
log2N stages, each of which involves 1

2N complex multiplications and N complex additions or
subtractions. The operation count (excluding computation of the complex exponentials and the
bit-reversed indexing) is thus 12N log2N complex multiplications and N log2N complex additions.
If additions and multiplications take about the same time, the speed up which can be achieved
relative to the straightforward implementation is 4N=(3 log2N). This is about 137 when N = 1024.
Larger transforms show even greater factors of improvement.


