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Spin-up of a stratified ocean, with applications to upwelling 
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Abstract--The method by which an ocean, initially stratified but motionless, adjusts to a suddenly 
applied wind stress is examined. For wind stress in the east-west direction, the zonal velocity in the 
ocean interior builds up linearly with time until a long planetary wave arrives from the eastern 
boundary. Then the interior flow stops increasing and oscillates about a steady value. At the west, a 
boundary layer forms and gets progressively thinner. The rate of thinning of this boundary layer is 
reduced by the arrival of long planetary waves from the east but is not stopped. A comparison is 
made between the barotropic and baroclinic responses. 

A comparison is also made between the upwelling at the eastern boundary induced by a longshore 
wind stress when there are no planetary waves (fiplane) and when there are planetary waves (~3-plane). 
In the former, upwelling is restricted to within a distance of ~ 30 km of the coast, whereas when 
planetary waves are included the width of the upwelling zone increases with time. On both f- and [3- 
plane, Kelvin waves carry energy poleward along the eastern boundary. For a wind stress which varies 
sinusoidally with y this results in the mean upwelling being nearly 90 ° out of phase with the wind stress. 
The amplitude of the Kelvin wave is damped on the ~3-plane but suffers no attenuation on the f-plane. 
The difference between the results for coastal upwelling on an f-plane and that on a f3-plane increases 
as the north-south scale of the forcing is increased. In the case where the scale is infinite, the f-plane 
upwelling increases indefinitely with time whereas the F-plane solution attains a steady value. 

1. I N T R O D U C T I O N  

This paper  seeks to give some insight into the 
role p lane ta ry  waves p lay  in the spin-up o f  the 
ocean. The quest ions we seek to answer are (i) 
how an ocean, ini t ial ly stratified but  a t  rest, 
would respond  i f  a s teady wind stress were 
suddenly  appl ied,  and  (ii) in what  way would  the 
ba ro t rop ic  and  first barocl inic  modes  respond 
differently. 

PEDLOSKY (1965a, b, 1967), PHILLIPS (1966), 
and  VERONIS (1963, 1966, 1970) have discussed the 
response to a wind stress per iodic  in time, GATES 
(1968) has considered aspects o f  the mid- la t i tude  
b a ro t ropic  spin-up prob lem,  and LIGt tTHILL (1969, 
1971) has considered the effects on the ba ro t rop ic  
flow near  a western b o u n d a r y  o f  apply ing  a s teady 
wind stress in low lat i tudes.  Despi te  the fact  that  
various aspects o f  bounda ry  effects, stratification, 
and  var ia t ion  o f  Coriol is  pa ramete r  with la t i tude 
have been considered,  a unified t rea tment  does not  
appea r  to exist. Since the ocean spin-up can be 
summed up ra ther  s imply in terms o f  p lane ta ry  

waves it appears  worthwhile  to present  the results. 
The model  used is fo rmula ted  in Sections 2-5,  
and  the results for an eas t -wes t  wind stress are 
discussed in Sections 6-8. 

The oceanic response to an appl ied  n o r t h -  
south wind stress is also o f  interest ,  because this  
form of  forcing is very efficient at  generat ing 
upwelling, an impor t an t  eastern b o u n d a r y  phe-  
nomenon.  ICHIYE (1972) and  HURLBURT and  
THOMSON (1973) have considered ~ effects on 
upwelling near  an eastern boundary ,  but  in the 
la t ter  formula t ion  the calculat ions are  only 
pe r fo rmed  long enough for  the ba ro t rop ic  mode  
to respond  to ~ dynamics.  The  inclusion o f  
effects allows p lane ta ry  waves to car ry  the 
upwelling wes tward  and  this implies tha t  up- 
welling can only a t ta in  a certain ma x imum value, 
even when the wind stress has an infinite n o r t h -  
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south length scale. This aspect of the problem is 
considered in Sections 9 and 10. 

2. THE BASIC EQUATIONS 

The position of a point in the ocean can be 
defined by co-ordinates @, 0, z) where ~. is the 
longitude (positive eastwards), 0 the latitude 
(positive northwards) and z is distance upwards. 
Let (u, v, w) be the corresponding velocity 
components. For  small perturbations on a basic 
state where density surfaces, and the ocean 
floor, are horizontal, the vertical structure can 
be described in terms of normal modes 
(LIGHTHILL, 1969), each of  which behaves 
independently. For a given mode, the equations 
satisfied by the perturbation are 

1 
ut -- 2f2 sin 0 v = -- sec 0 p~ + T~/H (2.1) 

R 

1 
v, + 2 £2 sin 0 u = -- =P0 + "cY/H (2.2) 

g 

H - -  1 1 1  --  us; P - -  g 'h;  H H1H2 
H~ kH2;  

c 2 = g ' H ,  (2.5) 

where h is the elevation of the interface and 

g'  (P~ -- PI)g/P2. (2.6) 

For the barotropic mode c is about 200 m s -i, 
while for the baroclinic mode c is about 2 m s i. 

3. AN APPROXIMATION WHICH FILTERS 

OUT INERTIAL PERIOD MOTIONS 

The aim here is to describe adjustments which 
take place on time scales large compared with the 
inertial time scale (2f2 sin 0) -~. Thus, approxima- 
tions which ignore ~/?t in comparison with 
2-Q sin 0 seem justified. To obtain such an approxi- 
mation, consider ?/?t of (2.1) plus 2~ sin 0 times 
(2.2) and ?/~t of (2.2) minus 2~-2 sin 0 times (2.1), 
i.e. 

c2 [ ] 
t ' , +  RSeCO u z + ( v c o s 0 ) 0  = 0 ,  (2.3) ut, + (2~2 sin 0) 2 u = -- 

2~ 
sin 0 P0 -- 

R 

where p is the perturbation pressure divided be 
the density, (zx, z.y) is the wind stress at the surface 
divided by the density and R is the radius of the 
Earth. The constants H and c depend on the mode 
in question; c is the speed of long internal waves 
for the mode concerned, and H is a measure of the 
degree of  forcing of that mode. In particular, for 
an ocean consisting of two layers of density 
pl and depth H~ in which the horizontal velocity 
is (u;, v;) (i = I, 2 for upper and lower layers, 
respectively) there are two modes. For  the 
barotropic mode one has, to a good approxima- 
tion 

Hlul + H2u~; 
u - -  p = gq;  H : Hx + H,z; 

H I - k  H2 

c 2 = gH, (2.4) 

where g is the acceleration due to gravity and q 
is the surface elevation. For  the baroclinic mode, 
the approximate values are 

sec0 + (2~2 sin 0 ry + r~) /H 

2f2 
v, + (2f2 sin 0)2v = sin 0 sec 0 pz -- 

R 

' ( ) ----RPet + - -2~-2s in0z  x + ~  /H. 

Assuming that r~ and zy are of the same order, 
the desired approximation is 

2 f 2 s i n 0 u =  - -P°  sec0 
R 2~2 R s i n 0 P ~ t  + zY/H 

(3.1) 

P0, - -  
1 2f~ sin 0 v = see 0 p~/R --  

2~2 R sin 0 
- -  T f H .  (3 .2 )  

In much of  the ocean, the first term dominates 
the right-hand side, i.e. there is a geostrophic 
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balance. However, there are boundary layers, such 
as upwelling layers, in which the balance is not 
geostrophic for both components (see e.g. GILL 
and CLARKE, 1974). In these layers, the flow 
parallel to the coast is balanced by a pressure 
gradient, but for the flow normal to the coast, the 
other terms in (3.1) or (3.2) are of the same order. 
Thus the 'quasi-geostrophic' approximation does 
not correctly describe the relation between 
velocity and pressure in such regions, but the 
above relations do. An approximation of the 
above type was suggested by FJORTOFT (1962). 

If (3.1) and (3.2) are substituted in (2.3), a 
single equation for the pressure results, namely 

[ / c o s  0po \ q_ sec0 ( 2 ~ ) y p ]  
- -  " . . . . .  : ~ P x ~  cos \ c ~ /  ~t L~kusin ,010 R~ sin 0 -- 0 

2~2 cos 0 
R 2 sin s 0 Pz 

2~2 [ z~ rxcos 0 
= R .  l_s~n~ - - ( ~ n 0 - ) o ]  "(3"3) 

4. THE BETA-PLANE APPROXIMATION 
When the latitude 0 does not depart too much 

from a given latitude 0 o, equation (3.3) is often 
approximated by an equation with constant 
coefficients, namely 

f 2  
(PXX 4- Pyy -- ~ P ) t  4- ~Px r'---- -- f(TXy -- TY), 

(4.1) 

which is called the beta-plane approximation to 
(3.3). In this equation 

x = R cos 00~, 
f = 2~2 sin 00 

y = R(0 -- 00) 
= 2f2 cos Oo/R. 

In order to calculate velocities as well as pressures, 
it is desirable to have also approximations to 
(3.1), (3.2) and (2.3) which (i) are consistent with 
(4.1), (ii) have constant coefficients and (iii) are 
valid in upwelling layers. For this purpose, first 
define 

p ,  sin 0o 

- ; ~ n ~  p" 

Then (3.1) and (3.2) become 

_ l p o  cot 0 p ,  see 0 
fu g R 2f2 R sin 0 

"rY sin 00 

H sin 0 

p;~, + 

fv 1 , 1 - -  .... sec 0 pa (p* sin 0)0 t -- 
R 2f2 R sin20 

z x sin 0o 

H sin 0 

The beta-plane approximation to these equations 
which has the desired properties, is, after dropping 
the asterisks 

1 "g y 
fu  = -- py ~p  - -  - -  fPx ,  4 - -  H (4.2) 

1 z x 
. . . .  (4.3) fv = px -vPyt 

J H 

The beta-plane approximation to (2.3) is 

Pt + c ~ (ux 4- vy) = 0. (4.4) 

It can be seen that (4.1) is obtained when u and v 
are eliminated from (4.2), (4.3) and (4.4). 

5. METHOD OF SOLUTION 

The aim is to show how the interior and the 
eastern and western boundary layers develop when 
a wind stress is suddenly applied to the ocean. To 
illustrate what happens, a simple geometry has 
been chosen, namely an ocean contained between 
two meridional boundaries x = -- L and x = L, 
and periodic behaviour with y is assumed. The 
wind stress is usually taken to be independent of  
x, and since the system is linear, results for an 
east-west stress r x can be discussed separately 
from those for a north-south wind stress. The 
former case will be discussed here and in Sections 
6 to 8, and the latter in Sections 9 and 10. 

Because of the periodic behaviour in y, the 
operator 3/~y can be replaced by il where l is the 
north-south wavenumber. Then (4.2) may be 
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written 
1 zy 

. . . .  1(i + + 
H' 

where s ~ / f  l 

would require a very large number of terms in the 
(5.1) Chebyshev expansion. Since it is unnecessary to 

have such a large value in order to illustrate the 
behaviour of the solution, more modest values 

(5.2) were used, the largest being 600. 

is a small non-dimensional parameter. In fact, 
the I~-plane approximation is based on the 
assumption that s is small. Now, applying the 
operator 

1 ?2 
--  l(i -t- s ) / f  - - j ~  ?x?t  

to (4.1), an equation for u results, namely 

(u, x lJ:u),° + ~ux -- ~/(1 -- i s )z  ~, (5.3) 

where ~2 = 12 (5.4) 

Solution of (5.4) by a time-stepping technique 
is now straightforward, since the boundary 
conditions at x ---- -- L, L are such that u is zero. 
It is important to use a numerical scheme which 
adequately represents propagating waves, so a 
spectral method was used, variables being 
expanded as a series of Chebyshev polynomials 
(Fox and PARKER, 1968, Chapter 3). These give 
higher resolution in the boundary layers, and, as 
confirmed by trial and error, require fewer terms 
for given accuracy than a Fourier series (see 
ORSZAG, 197l). As time goes on, the western 
boundary layer becomes steadily thinner 
(LIGHTHILL, 1969, 1971), so the number of terms 
required in the Chebyshev expansion is deter- 
mined by the length of time for which an accurate 
solution is needed. 

The solutions of (5.4) depend on only one 
non-dimensional parameter, 

A ~ ~z2L 2. (5.5) 

For  the barotropic mode, V- a "~ l-~ ~ 1000 kin, 
so if L ,-~ 3000 km, A is about 10. On the other 
hand, for a baroclinic mode, ~z -x ,,- c/f, i.e. the 
baroclinic radius of deformation, which is typic- 
ally 30 kin. For  this mode A is of order 10,000. 
To calculate solutions for such a large value 

6. RESULTS FOR AN EAST WEST WIND 

STRESS 

PEDt,OSKY (1965a, b) and PHILLIPS (1966) have 
discussed periodic solutions to this problem, but 
the spin-up effect resulting from an impulsively 
applied wind stress has not received so much 
attention. LIGHTHILL (1969) has discussed various 
aspects of this problem and in particular the 
behaviour of the western boundary layer. 
Lighthill showed how the solution can be found 
by a transform method, which is equivalent to 
integrating a set of periodic solutions. Thus some 
properties of the solution can be deduced from 
the properties of wave-like disturbances. The 
wave-like solutions are of two types (YosHIDA, 
1960; FOFONOFF, 1962), called Rossby or plane- 
tary waves (which have frequencies less than 
~/2~) and Kelvin waves which have frequencies 
greater than ~/2~. 

Before discussing the solution further, it is 
convenient to put (5.3) in non-dimensional form 
by using L as a scale for x, (~L)-1 as a scale for 
t and Ll2(l --  is)vx/~H as a scale for u. Then 
(5.3) becomes 

(uxx -- Au)r + u~ = 1, (6.4) 

where 

A ½ =(12  +a2)~L  (a = f / c )  (6.5) 

is the ratio of the natural scale (l 2 4 a2) -~ of the 
problem to the scale of the basin. The boundary 
conditions are 

u = 0 a t x =  ~ 1. (6.6) 

The solutions of (6.4) can be expressed as the 
sum of a particular solution, and a solution of the 
homogeneous equation. The particular solution 
can be chosen as either the time-independent 
solution which satisfies 
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u~ = 1 (6.7) 

or as the space-independent solution 

u ----- t / A .  (6.8) 

The former solution is Sverdrup's solution, whilst 
the latter is the solution which applies in the 
absence of boundary effects. To take account of 
initial and boundary conditions, a solution of the 
homogeneous equation 

The solution near the western boundary will be 
discussed in the next section. 

7. THE WESTER N B O U N D A R Y  LAYER 

As time goes on, the solution near the western 
boundary will be increasingly dominated by short 
waves, as these propagate information eastwards 
only very slowly. The short-wave approximation 
to (6.4) is 

u~xt + ux = 0, (7.1) 

(u,~ - -  Au)¢ + ux - 0 (6.9) 

must be added. This is the familiar planetary wave 
equation. Boundary effects propagated by these 
waves have a group velocity (LONGUET-HIGGINS, 
1965) given by 

k 2 -- A 

- (k + A) 

The largest group velocity occurs at k = 0 
when Cg = -- 1/A. As k increases, Cg changes 
sign and increases to a value of 1/8A at k --x/3A 
and then falls to zero as k -+ co. Thus information 
from the eastern boundary is rapidly transmitted 
westwards by the longest waves, while informa- 
tion from the western boundary can be trans- 
mitted eastwards at only one-eighth of the speed 
by relatively short waves. Thus the solution has a 
different character in three different regions. In 
the interior region, i.e. the region where boundary 
effects have not yet been felt, the solution is 
given by (6.8). This interior region is bounded by 
two moving boundaries. The one to the west 
moving eastwards at a speed of 1/8A and the one 
to the east moving westwards at a speed of 1/A. 
The latter front is due to long waves propagating 
energy westwards, and so the solution on either 
side is dominated by the long wave solution [for 
which the term uxx t in (6.4) and (6.9) is negligible]. 
Thus the solution to the east of the front is 
approximately equal to Sverdrup's solution 

u = x -- I. (6.11) 

where in the western boundary layer, u is required 
to vanish at x = -- 1 and to match with the 
appropriate interior solution valid outside the 
boundary-layer. Equation (7.1) has the set of 
similarity solutions 

t )"/2 j,, [2¢(1 X)t l, (7.2) 

where ,~ is a constant and Jv is the Bessel function 
of order ~. When (6.8) is the appropriate interior 
solution, the appropriate value of u is 1 and the 
solution of (7.1) matching this interior solution is 

J 

(7.3) 

In Fig. 1, this solution is plotted as a function of 
x for various values of t, for the case A -- 600. The 
value of A is somewhat less than would be 
appropriate for the baroclinic modes, but is 
sufficiently large to separate the boundary flow 
from the Sverdrup flow for sufficiently long a time 
for a solution of the form (7.3) to be established 
and consequently little extra insight would be 
obtained by using a larger value of A. 

In Fig. 2 is shown the solution computed 
from (6.4) for the above value of A. The agree- 
ment in the western region is good, confirming 
the above ideas. The interior increasing 
linearly with t up to a time comparable with the 
time it takes a long planetary wave to propagate 
from the eastern boundary is clearly visible. In the 
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b - - - -  2 

4 

7 

8 
9 

Fig. 1. Plot of (7.3) as a function of x for various values 
of t. The value of A is 600. The region to the left of the 
dashed line is that in which the above function is a good 
approximation to the numerically determined solution of 
(6.4). The plotting frequency is 100 units of dimensionless 

time. 

wake of this planetary wave, the solution is 
closely approximated by the Sverdrup solution, 
u = x -- 1, though there are perturbations on this 
basic flow. Results to be discussed later show 
that the amplitude of these perturbations in- 
creases as A decreases. 

There are two limitations on the validity of 
(7.3), Firstly it cannot be valid for times longer 
than 2A since by then the interior solution, where 
it matches with (7.3), is changing from the 
growing solution (6.8) to the Sverdrup solution 

(6.11). Secondly, the western boundary can only 
affect the solution a finite distance, dw, from the 
western boundary. This distance is made up of 
two parts. The first is the maximum distance 
t /SA (see Section 6) to which affects can be 
carried by planetary waves. The second distance 
6 is the one which results from making the 
system 'incompressible' to inertial-gravity waves. 
This distance is the trapping scale 

6 ~ A -½ (7.4) 

of the solutions of (6.4) with exponential character 
and is approximately equal (see Section 5) to the 
baroclinic radius of deformation in the case of the 
baroclinic mode. Thus 

aw - 6 4 t/SA. (7.5) 

Since (7.1) is valid only for scales small compared 
with ~5, (7.3) will only be valid for distances from 
the boundary less than & However, consideration 
of the solution obtained by transform methods 
(cf. LIGHTHILL, 1969, p. 62) shows that an 
improved approximation is given by 

1 

A 

( (t -- i + x  J1{2~/(1 +x)[t  --  A(l+x)]}). (7.6) 

Fig. 2. The numerically determined solution of (6.4) for comparison with Fig. 1. The solid diagonal line denotes 
the maximum distance information from the western boundary could have been propagated eastward into the 

interior by planetary waves. The dashed line is displaced a distance 8 from the solid line. 
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\~:~----- ,., b 

/-~. A~._ 8 

where b, = (½J2,,)L 
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(7.8) 

and j,, ,  is the nth zero of the Bessel function J,  of 
order v. Thus bl = 6"6 (ABRAMOWITZ and STEGUN, 
1965). In the improved approximation (7.6), the 
maxima and minima are moved a little further 
out, to the positions given by 

1 + x ": bnt 1(1 + Ab, t -2 ) .  (7.9) 

For times greater than 2A, the Sverdrup 
solution (6.11) is established in the whole of the 
interior, so the western boundary-layer solution 
must match (6.11). The solution (LIGHTHILL, 

1969) equivalent to (7.6) is 

Fig. 3. Plot of  (7.6) for comparison with Figs. l and 2. 
The region to the left o f  the dashed line is that in which 
the above function is a good approximat ion to that of  

Fig. 2. 

This solution is shown in Fig. 3 and is in excellent 
agreement with the exact solution right up to a 
distance dw from the western boundary. 

A noticeable difference between Figs. 1 and 3 
is in the position of maxima and minima of u. In 
the approximation (7.3), their position is given 
by 

1 + x  = b . t  x, (7.7) 

u 2Jo {2~/(1 + x)[t ~ A(I -~[ X)]} -- 1 + x. 

(7.10) 

The maxima and minima are again at points 
given by (7.9), but now with 

b n = (½./1,n) 2, (7.11) 

so bl 3.7 is now smaller. The values of u at the 
extrema are approximately 

u,, = 2J o (.11,,) - -  2, (7.12) 

L . . . . .  • . . . . . . . . . . . . . . . . . . . .  

i~ll ",,-,///.//J~" 

I,:, 

ii 
1,5 

Fig. 4. Numerically determined solution of  (6.4) for A = 20. There is no obvious ,/1 spin-up solution for this 
case because the Sverdrup solution is established across the whole ocean before such a boundary layer can become 
well established. The J0 solution which occurs for large time is apparent ,  however. Solid horizontal  lines are at 

u = 2.8, and u - 1.4. The plotting frequency is 5 units o f  dimensionless time. 
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SO //1 = 2.8 and u2 "~. - -  1"4. 
To test these ideas, results were computed for 

A = 20, the curves obtained being shown in 
Fig. 4. The positions o f  the first maximum and 
min imum are satisfactorily predicted by the above 
formulae. The value of  u at the first minimum is 
close to ul at large times. The value at the first 
maximum is reasonably close to u.,, but  more 
variable with time. By way of  comparison, 
Figs. 5a and 5b show results for a relatively small 
value, A ----- 4, which corresponds to a barotropic 
wave. The most  noticeable difference with this 
case is that  large oscillations extend over most  
o f  the basin, a l though still decreasing toward the 
east. For  even smaller A, this oscillation can 
actually make u reverse near the eastern boundary.  
This reversal is associated with the arrival at the 
eastern boundary  o f  short planetary waves from 
the western boundary.  

8. FORCING CONFINED TO ONLY PART 
OF THE BASIN 

In this section, the barotropic flow resulting 
f rom the application o f  a steady wind stress curl 
in a region remote from the western boundary  is 

examined. LIGHTHILL (1969) considered a problem 
of  this type in order to calculate changes in the 
Somali Current resulting from the onset o f  the 
Southwest Monsoon  in a region remote from the 
current. Lighthill's results suggest a Jo type o f  
response in the western boundary,  rather inde- 
pendent o f  the actual form of  remote forcing. 

The results of  the computat ions are shown in 
Fig. 6. The value A 20 was chosen as the 
results are only considered applicable to the 
barotropic mode in low latitudes. The equation is 

1 f o r x  ~>0 
( u , x - - A u ) ,  ! u, - = 0 f o r x . < 0 ,  (8.1) 

i.e. the forcing is confined to the eastern half  o f  
the basin, where it is uniform. 

The calculated solutions may be compared 
with the long-wave solution o f  (8.1), i.e. the one 
obtained by ignoring the term u,.., r For  t < A, this 
solution is 

u - -  g ¢  - -  1 for x > 1 --  t / A  

u : - -  t / A  for 0 < x - : ~  1 - t / A  

u - - x - -  t / A  for 0 > x ~- --  t / A  

u ~ 0 for x -z --  t / A .  (8.2) 

As for Figs. 2, 4 but for A := 4. Note the larger amplitude perturbations across the whole width of 
the basin. Curves plotted every 5 units of dimensionless time. 

Fig. 5a, b. 
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Fig. 6. T ime evolut ion o f  the barotropic flow for A 20 when a unit  wind stress is applied in the region 0 .- x ~-_ 1 
only. In this region the Sverdrup flow is u~ -- 1; for - 1  < x < 0, it is u -- - 1, modula ted  near  the western 
bounda ry  by a Z, type bounda ry  layer. Note  the rapid spin-up o f  the interior flow in the region where there is no 

local forcing. C ompare  with Fig. 4 which is for unit  forcing over the whole basin --  1 < x < 1. 

For t > A, the long-wave solution is 
u - - x - - 1  for x > 0  
u . . . .  1 for x > 1 -- t /A 

u : - - x - -  t /A for x < 1 -- t /A.  

(8.3) 

The long-wave solution describes the gross 
features of the solution, but there are noteworthy 
differences. For instance, there is an instan- 
taneous response all over the western half of the 
basin despite the fact that no planetary wave can 
have penetrated this region completely. This is 
due to the exponentially decaying solutions of 
(6.9). The instantaneous response is due to 
filtering out inertial-gravity waves, the approxima- 
tion effectively giving these waves infinite propa- 
gation speed. 

The development of the western boundary 
layer can be discussed as in the last section. After 
the Sverdrup interior has been established 
(t ~ 2A), tile western boundary layer solution is 
approximately given by (7.10), but with the last 
term (~ x) removed and the coefficient of J0 
reduced to unity. This predicts the first minimum 
of u as being -- 1.4 in agreement with the numeri- 
cally obtained value (Fig. 6). 

9. F O R C I N G  BY A N O R T H - S O U T H  W I N D  

STRESS 

In this section, the solution for a north-south 
wind stress that varies sinusoidally with y will be 
derived. The equation for u is (5.3), except that 
in this case the right-hand side vanishes for 
t > 0. If the effect of the impulsive application of 
the wind stress at t = 0 is included, the right- 

hand side becomes 

- 

f H 

The solution when ~-plane dynamics are 
excluded, i.e. thej:plane solution, is familiar from 
the work of CHARNEV (1955). This solution is 
given by 

zY ( c ° s h  ~x -- 1) (9.1) 
u -- - - f H  cosl~EzL ' 

where IL is defined by (5.4). For the baroclinic case 
where ~L is large, u is constant except near the 
boundaries, the value of the constant being the 
contribution to the baroclinic mode from the 
Ekman flux. Near each coastline, there is a 
narrow boundary layer of thickness tz 1 in which 
u falls to zero. The associated divergence requires 
movement of the thermocline so this narrow 
region is characterized by upwelling and a long- 
shore coastal jet associated geostrophically with 
the thermocline slope. Note that the u-field is set 
up instantaneously, a result of making the medium 
'incompressible' to inertial-gravity waves. The 
solution has the trapping scale (7.4) associated 
with this approximation as noted before. 

Now consider the [3-plane solution for u. 
Choosing TY/fH as a scale for u and the same x and 
t scales as before [L and ([3L) 1, respectively], the 
equation for u becomes, for t > 0, 

(Uxx - -  A u ) t  + u x = O. (9.2) 
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The initial condition is that u is the same as the 
f-plane solution which is impulsively generated 
at t --  0, i.e. 

cosh x/A x 
u = 1 -- (9.3) 

cosh ~/A 

in fact changes sign for a time, i.e. the solution 
overshoots the asymptotic limit. The time taken 
for the u-field to change significantly is of  order 
A ½, e.g. the value of u x at the eastern boundary 
first falls to zero at t = 4A ½, i.e. about 

The presence of planetary waves on the ~-plane 
changes the nature of  the solution only slightly 
for short times, but makes a profound difference 
for the longer term solution. This is because 
planetary waves allow energy to leak westwards, 
so it is no longer trapped within a Rossby radius 
of  deformation of the coast as it is on an f-plane. 
To assess the leakage of energy from the f-plane 
solution to the west, (9.2) has been solved numeri- 
cally by the same methods as outlined in previous 
sections. The solution for A -- 600 is shown in 
Fig. 7. 

By arguments similar to those of  Section 6, 
one would expect the interior solution to remain 
at the initial value u = 1 until the arrival of  
planetary waves from the boundaries, the fastest 
ones being the long waves from the east. After the 
passage of these waves, the solution should 
asymptote to u = 0, the Sverdrup solution. 
Figure 7 shows that such is indeed the case. Of 
interest here is the wave-like wake left behind 
after the passage of the primary front. For given 
t, the variations with respect to x show a primary 
wave followed by a succession of other waves. 
The number of  waves increases with t, but the 
amplitude and wavelength decrease with x. At 
any given x, the flow not only relaxes to zero, but 

4fz/~ ~ 4f/~c (9.4) 

units of  real time. Forf/f~ ~ 5000 km, c ~ 2 .5ms -1 
this is about 3 months. The implication is that on 
times small compared with this, the upwelling 
associated with cyclone-scale forcing will be 
largely unaffected by the ~-effect and that coastal 
Kelvin wave solutions for such frequencies may 
be sought on an f-plane (GlLL and CLARKE, 1974). 
However, upwelling on a seasonal time scale will 
be considerably influenced by this process, so 
computations of  such longer term changes must 
contain ~-plane dynamics (WHITE and MCCREARY, 
1974). 

Near the western boundary, the solution will 
be determined by the boundary-layer equation 
(7.1) whose solutions have already been given in 
Section 7. The solution appropriate for the case 
in hand is 

u (1 --J0{2~/(I  + x ) [ t - - A ( l  +x)]}) ,  (9.5) 

for values of  t less than 2A, the time for the 
planetary waves from the east to reach the 
western boundary. The development of  the 
solution with this character near the western 
boundary can be seen in Fig. 7. 

'V v'2 ~ ~ / 9  /8  /7 /6 /5 /~ ,3 '2 /~ 

Fig. 7. Relaxation of the f-plane solution (9.3) for a steady longshore wind stress independent of x, y when 
f~ effects are included (9.2). The propagation of Rossby waves from the east is clearly visible. The solution 

relaxes to the Sverdrup solution u = 0. Curves are plotted every 100 units of dimensionless time. 
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An interesting comparison between the f-plane 
and the ~-plane solutions is in the nature of the 
interior solution after a long time. In the f-plane 
solution, this consists of the Ekman flux in the 
top layer. In the ~-plane solution, there is no net 
flow so the Ekman flux in the top layer is balanced 
by a geostrophic flow in the opposite direction, 
also within the top layer. The geostrophic flow 
must be associated with a north-south pressure 
gradient established after the passage of the 
planetary waves. The comparison of the f-plane 
and B-plane solutions for the pressure will be 
made in the next section. 

10.  S O L U T I O N  FOR THE T H E R M O C L I N E  

D I S P L A C E M E N T  

In the last section, the solution was found for 
the eastward-velocity component u. In this section, 
the corresponding solution for the pressure p will 
be discussed. For a two-layer model with a deep 
lower layer, the thermocline displacement h is 
given by 

h ~ P/g'P.  (10.1) 

The solution for p must satisfy (4.2) and also the 
equation obtained by substituting (4.3) for v in 
(4.4). For the f-plane case, this solution can be 
obtained analytically. The result, which can be 
confirmed by substitution, is 

rY L sinh ~x sin f i t  + 
P I H  cosh I~L ~. 

-~ i cosh tzx (cos f l t  1)1. (10.2) 

For the baroclinic mode, for which I,L is large, 
this solution is only significant in the coastal 
boundary layers. Near the eastern boundary, if 
the exp( i ly )  factor is included and the real part 
taken, (10.2) gives 

p = (rYlIH) e "(x-L) [sin ly  - -  

-- sin l (y  --ft/,~.)], (10.3) 

i.e. is the sum of a stationary forced solution and 
a northward (in the northern hemisphere) 

travelling Kelvin wave. Initially the two sinusoids 
cancel so p is zero, but then p increases linearly 
with time as the two sinusoids get out of phase. 
Eventually [p! reaches a maximum value of 

Pmax = 2•Y/IH, (10.4)  

which is achieved at intervals of 

n!z / f l  ~ n /c l  

as successive waves pass by along the coast. 
Note that the time-averaged value of p is a 

maximum at y - -  n/21, whereas the wind is a 
maximum at y - 0. In other words, the maximum 
average upwelling is a quarter of a wavelength 
poleward of the maximum equatorward wind. 

The following discussion is about the baro- 
clinic mode, so it is assumed that t~L is large and 

~ f / c .  Then for the f~-plane model, two time 
scales enter the problem. These are the time scale 
(cl) -1 of the Kelvin waves, which appears in 
(10.3) and the time s c a l e f / ~ c  (see Section 9) for 
planetary wave effects to influence the eastern 
boundary layer. The ratio of the two time scales is 

= ~ / f /  , 

(see 5.2) which is normally small, so the time scale 
for planetary wave effects to take place is longer. 
From dimensional arguments, (10.3) will be valid 
for a time comparable with that given by (9.4), 
but dimensional arguments can give no informa- 
tion about the actual numerical coefficients. For a 
more quantitative estimate, the solution for p at 
the eastern boundary is required. The solution, 
found by Laplace transform methods, is 

~Hp_. 1 _2i  cos\2.~R 
f r  1 -~- i /e n 1 R- 

[( ' ) 1 + 2 i _ _  i s / R  ~ - -  1 - -  

(1 + + (10.5) 
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This solution should be contrasted with (10.2). 
Firstly, it is not obvious that the Kelvin wave 
frequency (el) is present in (10.5). However, it 
can be shown that in the limit s ~ 0  with 

fit/l* ~ clt fixed, (10.5) tends to the value given by 
(10.2) at the eastern boundary x --- L. 

Figure 8 shows the behaviour of the imaginary 
part of (10.5) for several values of  ~ and A --  150. 
For small ~, it is clear that the oscillation suffers 
severe damping in the time scale given by (9.4) 
as suggested above, but even for times as small as 
f /~c the oscillation is damped by nearly 50°;, 
suggesting that (9.4) is an overestimate of  the 

-75 

1 

• 50 2 

• 25 - - - -  

~60 
i I 

Fig. 8. Plot of  the imaginary part of  (10.5) for A = 150 
as a function of  dimensionless time for the values of  

-- 0-2, 1, 2, 4, 10. Damped oscillations are evident for 
all values of  e, but only for the smallest value of  e does the 
period of  the oscillation match the Kelvin wave period 
2n~/Ae, indicated by the solid lines at foot of  graph for 

e - 0 . 2 , 1 , 2 .  

time scale on which t3-effects modify upwelling. 
For times longer than f /~c the integral in (10.5) 
becomes small, and p tends to a steady value. 
Planetary waves carry the upwelling westward 
and in a steadily widening zone, upwelling of 

amplitude f r  (1 -~- i/s) -1 results. This effect is 
~H 

shown in Fig. 9, in which the imaginary part o fp  is 
plotted as a function of x for various values of 
dimensionless time for A = 150. 

I f  l = i0 -6 m -1, ~ = 0.1 N m ", and 

/ 
/ /  

• 7 "8 ,9 
Fig. 9. Plot o f  the imaginary part o f  ~Hp/fr as a function 
of  x away from the eastern boundary for A = 150, e 0' 2. 
The curves are plotted every l0 units o f  dimensionless time. 
The width of  the upwelling zone can be seen to broaden 

with time and to asymptote to a value e/(l + d) .  

g '  -- 0'03 m s -2, (10.1) and (10.5) give a mean dis- 
placement of 3000/H m -1. This is only 6 m for a 
normal thermocline depth of 500 m, but in up- 
welling areas a more appropriate value of H is 
100 m in which case the displacement is 30 m. The 
time required to damp the oscillations by 503.o is 
about a month i f f / ~  and c have the values in 
Section 9. 

There is also some interest in the limit s -~ co, 
corresponding to no longshore variation, as the 
f-plane solution for this case is often quoted. In 
this case, p grows linearly with time in the f-plane 
case but tends to a limit of(see 10.6) 

p .IV~H 

in the ~-plane case, this limit being achieved in 
the time scale given by (9.4). In this limit, the 
maximum upwelling occurs where the wind is a 
maximum. 

HULBURT and THOMPSON (1973) made numeri- 
cal studies for the case l --  0 (s : -  oo) in order to 
compare f-plane and ~-plane models. Their 
forcing lasted for 15 days, for which ~-effects are 
very important for the barotropic mode but of 
little significance for the baroclinic mode. This is 
presumably the reason why they found a pole- 
ward undercurrent only in the ~-plane case, 
although the thermocline displacement was much 
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the same in the two cases. Hurlburt and Thompson 
continued their calculation after the forcing was 
turned off, and the widening of the upwelling 
zone due to [~-effects is visible in Fig. 8 (corres- 
ponding to day 50) of their paper. 

The differences between f-plane and g-plane 
solutions for large ~ are of somewhat academic 
interest in that the ~-plane approximation, as 
normally derived, is based on the assumption 
that e is small. Even when ~ is small, the ~3-plane 
(and f-plane) solution for p only approximates to 
the solution on a spherical Earth for a limited time. 
This is because Kelvin waves propagate informa- 
tion from one latitude to another (with appreci- 
ably different values of  t3 and f )  in a time of order 
R/c, where R is the radius of  the Earth. In fact, 
Kelvin waves take this order of time to propagate 
from the equator where they may have been 
produced by interaction of an equatorial Kelvin 
wave with the coast. Since R/c is of the same order 
as (9.4), the solutions given in this section show 
the nature of ~-effects on upwelling, but accurate 
solutions for a spherical Earth would require a 
more careful analysis. Of course, planetary wave 
propagation is only one of many effects which are 
likely to be important in practice, and this section 
aims merely to clarify the nature of  the one effect. 

1 1. SUMMARY 
The response to an applied wind stress of  a 

two-layer ocean is examined. The ocean is on a 
~3-plane, is contained between rigid north south 
boundaries and has fixed stratification. For 
steady east-west wind stress, it is found that 
during spin-up, the baroclinic flow in the interior 
increases linearly with time, until a non-dispersive 
Rossby wave has time to propagate from the 
eastern boundary. The flow behind this wave is 
then of the Sverdrup type. Near the western 
boundary, the flow builds up linearly with time 
also, but with a perturbation of the form 

Jz[2~v / (1 + x)t]/~/(l + x)t superimposed, which 
leads to a thinning boundary layer. After a time 
sufficiently long for the westward travelling wave 
to cross the whole basin, the flow near the 
western boundary changes to a steady flow with 

perturbations of  tile form Jo[2V~(1 --~ X)t]i The 

perturbations are of  larger amplitude in this 
latter state but the rate of  thinning is reduced. 

For the case of  steady longshore wind stress, 
a comparison is made between the solution 
obtained for f-plane dynamics and that for 
~-plane dynamics. For both cases, the offshore 
velocity u is unperturbed by coastal Kelvin waves 
and thus a comparison can be made between the 
two solutions which is independent of I. On the 
B-plane, planetary waves allow the eastern 
boundary initially of  width elf  to broaden and for 
u to relax to zero. During the course of this 
relaxation, the velocity can undergo a complete 
reversal, implying that the Ekman flux can be 
more than offset by reverse flow below the 
Ekman layer but above the main thermocline. 

On the f-plane, for a wind stress sinusoidal in 
y, upwelling is in the mean located not at the 
position of maximum equatorward wind stress 
but a quarter wavelength poleward. This result is 
a consequence of coastal Kelvin waves carrying 
energy polewards. Because the pressure field is 
sensitive to Kelvin waves, a comparison between 
the f~-plane and f-plane solution is dependent on 1. 
The maximum difference occurs when l ~= 0: on 
the f-plane the upwelling increases linearly with 
time whereas on the ~3-plane upwelling can attain 
a maximum value Jr/~H. As l is increased the 
mean [3-plane solution approaches the mean 
f p l a n e  solution near the coast and again suffers 
a phase shift. On the J:plane, Kelvin waves are 
unattenuated but they are damped on the L3-plane. 
Also, on the ~3-plane upwelling is not restricted 
to the coastal region but can propagate westwards. 
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