
3. Coriolis in Local Co-ordinates

We choose to observe in a local, rotating co-ordinate system fixed to the surface of the

earth with x oriented to the East, y oriented to the north, and z oriented in the direction of

the effective gravity, that is, !geff = (0, 0, g).

Fig. 2. Unit vectors east (”e”), north (”n”), and up (”u”) at the surface of a rotating earth.

[Adapted from https : //en.wikipedia.org/wiki/Coriolis force]

In this co-ordinate system, the earth’s rotational vector becomes, with φ the latitude
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The Coriolis acceleration then becomes

2·!Ω×!u =
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The last approximation uses wu $ vn and subsequently we write f = 2sin(φ) as the Coriolis

parameter that varies with latitude φ.
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