3. Coriolis in Local Co-ordinates

We choose to observe in a local, rotating co-ordinate system fixed to the surface of the earth with x oriented to the East, y oriented to the north, and z oriented in the direction of the effective gravity, that is, $\vec{g}_{\text {eff }}=(0,0, g)$.

FIG. 2. Unit vectors east ("e"), north (" n "), and up ("u") at the surface of a rotating earth. [Adapted from https : //en.wikipedia.org/wiki/Coriolis_force]

In this co-ordinate system, the earth's rotational vector becomes, with ϕ the latitude

$$
\vec{\Omega}=\left(\begin{array}{c}
0 \tag{16}\\
\Omega_{y} \\
\Omega_{z}
\end{array}\right)=\Omega \cdot\left(\begin{array}{c}
0 \\
\cos (\phi) \\
\sin (\phi)
\end{array}\right)
$$

The Coriolis acceleration then becomes

$$
2 \cdot \vec{\Omega} \times \vec{u}=\left(\begin{array}{c}
0 \tag{17}\\
2 \cos (\phi) \\
2 \sin (\phi)
\end{array}\right) \times\left(\begin{array}{c}
u_{e} \\
v_{n} \\
w_{u}
\end{array}\right)=\left(\begin{array}{c}
w_{u} \cdot 2 \cos (\phi)-v_{n} \cdot 2 \sin \phi \\
u_{e} \cdot 2 \sin (\phi) \\
-u_{e} \cdot 2 \cos (\phi)
\end{array}\right) \approx\left(\begin{array}{c}
-v_{n} \cdot 2 \sin (\phi) \\
u_{e} \cdot 2 \sin (\phi) \\
-u_{e} \cdot 2 \cos (\phi)
\end{array}\right)
$$

The last approximation uses $w_{u} \ll v_{n}$ and subsequently we write $f=2 \sin (\phi)$ as the Coriolis parameter that varies with latitude ϕ.

