Homework-1 Due Monday Feb.-19, 2024 prior to class

- 1. [5 pts] A record player rotates at 33 rpm (rotations per minute). A glass of wine accidentally spills over its surface. Should you treat this flow using GFD or classical fluid dynamics? Assume the spilled volume of 20 ml spreads within 2 seconds over an area of about 25 cm².
- 2. [10 pts] Derive the expression of acceleration in polar co-ordinates (r, ϕ) for the tangential component a_{ϕ} from $x(r,\phi)=r\cos(\phi)$ and $y(r,\phi)=r\sin(\phi)$ that is
 - (a) $a_{\phi} = r d^2 \phi / dt^2 + 2 dr / dt d\phi / dt$ in a non-rotating and
 - (b) $a_{\phi} = r' d^2 \phi' / dt^2 + 2 dr' / dt d\phi' / dt + 2 \Omega dr' / dt$ in a rotating frame

where r'= r is the same radial distance in rotating and non-rotating systems while and ϕ '= ϕ - Ω t, that is, the angle ϕ is rotated by Ω t in the rotating system

- 3. A particle in a non-rotating reference frame moves in a horizontal plane with velocity $dx/dt=const.=u_0$ and dy/dt=0 passing x=0 and y=2 at time t=0 (Figure).
 - (a) What force must be applied to ensure this motion in a non-rotating frame? [5pts]

