Homework-1 Due Monday Feb.-19, 2024 prior to class

1. [5 pts] A record player rotates at 33 rpm (rotations per minute). A glass of wine accidentally spills over its surface. Should you treat this flow using GFD or classical fluid dynamics? Assume the spilled volume of 20 ml spreads within 2 seconds over an area of about $25 \mathrm{~cm}^{2}$.
2. [10 pts] Derive the expression of acceleration in polar co-ordinates $(r, \phi)$ for the tangential component $a_{\phi}$ from $x(r, \phi)=r \cos (\phi)$ and $y(r, \phi)=r \sin (\phi)$ that is
(a) $\mathrm{a}_{\phi}=\mathrm{rd}^{2} \phi / \mathrm{dt}^{2}+2 \mathrm{dr} / \mathrm{dt} \mathrm{d} \phi / \mathrm{dt}$ in a non-rotating and
(b) $a_{\phi}=r^{\prime} d^{2} \phi^{\prime} / d t^{2}+2 d r^{\prime} / d t d \phi^{\prime} / d t+2 \Omega d r^{\prime} / d t$ in a rotating frame
where $r$ ' $=r$ is the same radial distance in rotating and non-rotating systems while and $\phi^{\prime}=\phi-\Omega \mathrm{t}$, that is, the angle $\phi$ is rotated by $\Omega \mathrm{t}$ in the rotating system
3. A particle in a non-rotating reference frame moves in a horizontal plane with velocity $\mathrm{dx} / \mathrm{dt}=$ const. $=\mathrm{u}_{0}$ and $\mathrm{dy} / \mathrm{dt}=0$ passing $\mathrm{x}=0$ and $\mathrm{y}=2$ at time $\mathrm{t}=0$ (Figure).
(a) What force must be applied to ensure this motion in a non-rotating frame?
[5pts]



