Equations \#1, \#2, and \#3:
Governing Equations
Norton's $2^{\text {un }}$ low in a rotating frame.

$$
\frac{d \vec{\mu}}{d t}+2 \vec{\Omega} \times \vec{\mu}=\sum_{i} \vec{F}_{i}
$$

acceleration of fid
particle
sim of all fores applied to that particle

A flied parcel is elefined by

$$
\vec{x}=\vec{x}(t, \vec{x}(t=0))
$$

and has a velocity

$$
\vec{\mu}=\vec{\mu}(t, \vec{x}(t=0))
$$

or, if we tag it by its
trajectory $\vec{x}_{p}(t)$

$$
\vec{u}=\vec{u}\left(t, x_{p}(t), y_{p}(t), z_{p}(t)\right)
$$

then the time-rate-of-change becomes

$$
\begin{aligned}
& \vec{i} \cdot \frac{d \vec{u}}{d t}=\frac{d}{d t} \mu=\frac{\partial \mu}{\partial t}+\frac{\partial \mu}{\partial x} \frac{d x}{d t}+\frac{\partial \mu}{\partial y} \frac{d y}{d t}+\frac{\partial \mu}{\partial z} \frac{d z}{d t} \\
& =\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \\
& \text { velocity of a particle velocity field through which a particle may move } \\
& =\vec{i} \cdot \underbrace{\left(\frac{\partial \vec{u}}{\partial t}+(\vec{u} \cdot \vec{\nabla}) u\right) \quad \text { where } \sigma \equiv\left(\frac{\partial}{\partial \times}, \frac{\partial}{\partial j}, \frac{2}{\partial z}\right) .} \\
& \text { Lagrangein Eulaiin }\left\{\begin{array}{l}
\frac{D \vec{u}}{D t} \quad \begin{array}{l}
\text { adjective accusation } \\
(\text { nontivear })
\end{array}
\end{array}\right.
\end{aligned}
$$

We have interpret velocity as a velocity field

Thus

$$
\frac{D}{D t} \vec{u}+2 \vec{\Omega} \times \vec{\mu}=-\frac{1}{\rho} \vec{\nabla} p+\vec{F}_{\text {shes }}-\vec{\nabla}\left(\Phi_{g}-\left|\vec{\rightharpoonup}_{2}\right|^{2}\left|\overrightarrow{I_{2}}\right|^{2} \mid z\right)
$$




T~1 day
Che: $\frac{10 \mathrm{~m} / \mathrm{s}}{(24.3600) \mathrm{s}} \quad \frac{10 \mathrm{~m} / \mathrm{s}}{24.3600 \text { seconds }}$
oeo: $\frac{1 \mathrm{~m} / \mathrm{s}}{d_{a y}} \quad \frac{1 \mathrm{~m} / \mathrm{s}}{d^{2} y}$
$g$
$\frac{10 \mathrm{~m} / \mathrm{s}}{1 \mathrm{sec}}$

Thus in geophysical flaws gravity is usual several order of magnitudes langer than the accelartions
Hence we define portubation pressure ${ }^{p}$ and postulation density $P^{\prime}$ as departures from ar equilibrium (ot rest $p^{\prime}=\sigma, p^{\prime}=0$ ):

$$
p=p_{0}(z)+p^{\prime} \text { and } \rho=\rho_{0}(z)+p^{\prime}
$$

that satisfy

$$
\frac{d p_{0}}{d z}=-g p_{0}
$$

The partulation pressure and density then are $\begin{aligned} & p r e s s u r e ~ \\ & p=p \\ & p= \\ & (z)\end{aligned}+$

$$
p=p 0(z)+p^{\prime}(x, y, z, t)
$$

Density rho:

$$
\begin{array}{ll}
p=p_{0}(z)=p^{\prime}(x, y, z, t) & \underbrace{\rho}_{\text {achace }}=\underbrace{\rho_{0}(z)}_{\text {e rest }}=\underbrace{\rho^{\prime}(x, y, z, t)}_{\text {pertulati- duet motion }}
\end{array}
$$

and our momentum balance becomes not weed

$$
\frac{D}{D t} \vec{\mu}+2 \vec{\Omega} \times \vec{\mu}=-\frac{1}{\rho_{0}} \vec{\nabla} p^{\prime}-\frac{\rho^{\prime}}{\rho_{0}} \vec{g}+\vec{F}_{\text {thess }}
$$

Boussinesy,
"new"
not yet explained
In the special use of a homogeneous fid (maiform density)

$$
p^{\prime}=\sigma
$$

(barotropic Iqnamies no buoyancy forces)

Otherwise - $\rho^{\prime} \vec{g}$ represents the broyoncy force (Barochinic dian
Indepardat vorcibles: $t, x, y, z$
Depactut variables : $u, v, w, p, p$
3 equations for 5 deperclant variables
$\rightarrow$ need two mure independent equations to determine the spten's properties

