G7.3
Gill (1982) The complete problem is sobered if we find complete $\quad c^{\wedge} 2=g^{*} \mathrm{H}$ solutions to

$$
\frac{\partial^{2} y}{\partial t^{2}}-\underbrace{c^{2}}_{\text {relative varriity }}\left(\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}\right)+\underbrace{f_{y}^{2} y}_{\text {stetting }}=-f^{2} y_{0} \operatorname{sgn}(x)
$$

Consider this complete solution to consist of two parts, that is

Which gives
We got this "steady" solution last class period when we used initial conditions at time $t=0$:
(a) foxed problem $\quad-c^{2}\left(\frac{\partial^{2} \eta^{2} \text { stacc }}{\partial x^{2}}+\frac{\left.\partial^{2} y_{\text {teach }}^{\partial y^{2}}\right)+f^{2} y \text { skald }=-f^{2} y_{0} \text { gu ct }(t)}{}\right.$
(b) unforced problem $\frac{\partial^{2}}{\partial t^{2}} y_{1+}-c^{2}\left(\frac{\partial}{\partial x^{2}} \eta_{1+}+\frac{\partial y}{\partial y^{2}}\right)+f^{2} y_{1+}=\sigma$

We solved (Q) that gave us $y_{\text {stecoch }}=\eta_{0} \operatorname{spu}(x)\left(-1+e^{-1 x / 9}\right)$
We still need to sole (b) that give us the tine dependant or transient port of the complete solution

$$
a=\operatorname{sqrt}\left(g^{*} H\right) / f
$$

For initial condition we also have

$$
\eta(x, y, t=0)=\eta_{H}(x, y, t=0)+y_{\text {stead }}(x, y)
$$

or $\quad \eta_{H}(x, y, t=0)=-y_{0} \operatorname{sgn}(x)-y_{0} \operatorname{sgn}(x)\left(-1+e^{-\mid x / 9}\right)$

$$
y_{H}\left(x_{1,}, t=0\right)=-y_{0} \operatorname{spn}(x) e^{-|x| / a}
$$

time-dependent
The transients are obtained sugect to this condition from

$$
\left.\frac{\partial^{2} y_{H}}{\partial t^{2}}-c^{2}\left(\frac{\partial^{2} y_{H}}{\partial x^{2}}+\frac{\partial^{2} y_{H}}{\partial y^{2}}\right)+f^{2} y_{H}\right)=\sigma
$$

linear and unforced wave equation with a wrinkle
and solutions are of the form
Wave Solutions:

$$
\eta_{H} \propto \exp [i(k x+l y-\omega t)]
$$ $\exp \left[i^{*} w t\right]=\cos \left(w^{*} t\right)+i^{*} \sin \left(w^{*} t\right)$

where $\vec{k}=(k, l)$ is the horizatul vector wave number with $k_{H}^{2}=k^{2}+l^{2}=|\vec{k}|$

Gill (1982) Poinure sohtions
too much technical detail
removed 2024

Dispersion
Relation

$$
\omega^{2}=f^{2}+k_{H}^{2} c^{2}
$$

$(w / f)^{\wedge} 2=1+k^{2}={ }^{\wedge}{ }^{\wedge}{ }^{*}(c / f)^{\wedge} 2$
$(w / f)^{\wedge} 2=1+k a p p \wedge^{\wedge} 2^{*} a^{\wedge} 2$

Recall
$c^{\wedge} 2=g^{\star} H$
$c / f=a$
shat Poincare waves $\left(k_{1+} a>1\right)$
have
Rossby radius a >> wavelenth 1/kappa

$$
\omega \approx k_{H} c=k c
$$

thus ellipticity $\frac{\omega}{f} \approx \frac{k c}{f}=k \cdot a>1$ long thin almostrectheear
lang Poincoré waves $\quad\left(x_{H}, 9<1\right)$
have $\omega \approx f$
thus ellipticity is $\frac{w}{f} \approx \frac{f}{f}=1 \quad$ circular motion
suse of rotation always clockwise (auti-cylowic)
show Gill Fig. 8.2 and 8.3
then move to 9.3 : Forming due to surface stress

