G9.2
Horisuatul stress $\left(\tau^{(x)}, \tau^{(y)}\right)$ at earth's surface
 fore / mild area
stress applied at one level sets flied in motion thus exerting a stress on the laura below δ_{z}
the stress or the layer below is

$$
\left(\tau^{(x)}-\delta z \frac{\partial \tau^{(x)}}{\partial z}, \tau^{y}-\delta z \frac{\partial \tau^{(y)}}{\partial z}\right)
$$

but the lower lear exits a stress $\left(-\tau^{(n)},-\tau^{(s)}\right)$ or the upper layer, this, the net force/ unit area will be the difference, that is,

$$
\begin{aligned}
& \left.\left(\frac{\partial \tau^{(x)}}{\partial z}, \frac{\partial \tau^{(s)}}{\partial z}\right) \cdot \delta z \quad \right\rvert\, \cdot \frac{\delta x \cdot \delta z}{\text { mass }} \\
& \vdots \quad \frac{1}{p}\left(\frac{\partial \tau^{(x)}}{\partial z}, \frac{\partial \tau^{(s)}}{\partial z}\right)
\end{aligned}
$$

This is the additional fore /moss that tends to accelente the fid

$$
E_{V}=\frac{A_{v} / \Omega}{H^{2}} \equiv\left(\frac{\delta_{E}}{H}\right)^{2}
$$

Limearsed moventun equations $R_{0} \ll 1, R_{0 T} \sim E_{V} \sim 1$

$$
\begin{aligned}
& \frac{\partial \mu}{\partial t}-f v=\frac{1}{\rho} \frac{\partial \mu}{\partial x}+\frac{i \partial \tau^{(x)}}{\rho \partial z}
\end{aligned}
$$

Separate is to componarts.
[binear equations; solutions con elvasap be added up in the end sver thaugh they are cossidred separitel I

$$
\begin{aligned}
& \mu=\mu_{p}+\mu_{E}, v=v_{p}+v_{E} \\
& \frac{\partial \mu_{p}}{\partial t}+f v_{p}=-\frac{1}{p} \frac{\partial p}{\partial x}, \frac{\partial v_{p}}{\partial t}-f \mu_{p}=-\frac{1}{\rho} \frac{\partial_{p}}{\partial y}
\end{aligned}
$$

Skman $\left\{\begin{array}{l}\frac{\partial \mu_{E}}{\partial t}+f v_{E}=+\frac{1}{\rho} \frac{\partial \tau^{(t)}}{\partial z}\end{array}, \frac{\partial v_{E}}{\partial t}-f \mu_{E}=+1 \frac{\partial \tau^{(g)}}{\partial z}\right.$

The stress $\left(\tau^{(k)}, \tau^{(s)}\right)$ is zero outside the boundary lager, so vertical integration gives

$$
\rho\left(\frac{\partial u_{E}}{\partial t}-f V_{E}\right)=-\tau_{0}^{(*)} ; \rho\left(\frac{\partial V_{E}}{\partial t}+f u_{E}\right)=-\tau_{0}^{(y)}
$$

sign determines if bottom or surface boundary: " +" boundary is above
" -" boundary is below
and

$$
\left(u_{E}, V_{E}\right)=\int\left(u_{E}, v_{E}\right) d z=\int\left(\mu-u_{p}, v \cdot v_{p}\right) d z
$$

is the volume trumspert, relative to the pressure grectinet Piss (Ekman volume transport).

For steady state conditions $\frac{\partial}{\partial t}=\sigma$ we hove y-component of stress x-component of velocity

$$
-\rho f V_{E}=-\tau_{0}^{(x)} \quad \text { and } \quad \rho f U_{E}=-\tau_{0}^{(\rho)}
$$

x-component of stress
 y-component of velocity
or $U_{E} \propto-\tau^{(y)}$
$V_{E} \propto+\tau^{(k)}$
or $\tau^{(*)} \propto V_{E}$
Bottom Boundary Layers to the left of stress (northern hemisphere, foo) ${ }^{\text {c }}$

