Fully non-linear equations of motion for (u, v, w, p, and rho')

$$
\begin{gathered}
\frac{d \mu}{d t}-f_{0} v-\beta_{0} j v=-\frac{1}{\rho_{0}} \frac{\partial p}{\partial x}+\gamma \frac{\partial^{2} \mu}{\partial x^{2}} \\
\frac{d v}{d t}+f_{0} \mu-\beta_{0} y \mu=-\frac{1}{\rho_{0}} \frac{\partial p}{\partial x}+\gamma \frac{\partial^{2} v}{\partial y^{2}} \\
\sigma=-\frac{\partial p}{\partial z}-\rho^{\prime} g \\
\frac{\partial \mu}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial v}{\partial z}=\sigma \\
\frac{\partial \rho^{\prime}}{\partial t}+\mu \frac{\partial \rho^{\prime}}{\partial x}+\frac{v \partial \rho^{\prime}}{\partial y}+w \frac{\partial \bar{\rho}}{\partial z}=\sigma
\end{gathered}
$$

[we will rectum to this later again] and

$$
\begin{aligned}
& \mathrm{O} \text { (1) } \mathrm{O} \text { (no) } \quad \mathrm{O}\left(\mathrm{Ro}^{\wedge 2)}\right. \\
& \mu=U\left[\mu_{0}^{*}+R_{0} \mu_{1}^{*}+\sigma\left(R_{0}^{2}\right)\right] \quad \mu_{0}=\mathbb{U}_{1} \cdot \mu_{0}^{*}=\sigma\left(\mathcal{U}_{1} .\right.
\end{aligned}
$$

The $\sigma(1)$ equations are geostrophic "nd" is no dimension \& O (1)

O(1) velocities

$$
\begin{aligned}
& v_{0}=\frac{1}{p_{0} f_{0}} \frac{\partial p_{0}}{\partial x}, \quad \mu_{0}=-\frac{1}{\rho_{0} f_{0}} \frac{\partial p_{0}}{\partial y} \\
& \frac{\partial \mu_{0}}{\partial x}+\frac{\partial v_{0}}{\partial y}=\sigma=\frac{\partial w_{0}}{\partial z} \quad \begin{array}{l}
\quad \begin{array}{l}
\text { independent equations } \\
\text { for three variables } \\
\\
\rightarrow>\text { po still "unknown" }
\end{array}
\end{array}
\end{aligned}
$$

Order Roo or $\mathrm{O}(\mathrm{Ro})$ with known $\mathrm{O}(1)$ variables ($\mathrm{u} 0, \mathrm{v} 0, \mathrm{p} 0$) but unknown $\mathrm{O}(\mathrm{Ro})$ variables ($\mathrm{u} 1, \mathrm{v} 1, \mathrm{p} 1$)

Then the full agoostroplic x-momentum critter in terns of geostrophic velocity or pressure becomes

