Modeled Sea Surface Temperature

Gulfstream

Show full Movie emphasizing Western Boundary Currents & Gyres

Vorticity Tendencies		wind-stress curl (surface Ekman)	+ friction (bottom Ekman)	+ planetary (beta effect)	= 0
		$\partial_y \tau^{(x)}$	$\nabla^2 p$	$\partial_x p$	
symmetric ocean circulation	West	-1	+0.1	-1	= -1.9
	East	-1	+0.1	+1	= +0.1
asymmetric ocean circulation	West	-1	+1.0	-9.0	= 0.0
	East	-1	+0.1	+0.9	= 0.0

symmetric circulation

asymmetric circulation

adapted from Stommel(1947)

1000km

Potential Vorticity Conservation following a fluid parcel

D/Dt [$(f + \xi)/H$] = 0

 $f = f_0 + \beta_0 * y$ planetary (background) vorticity ξ relative (local) vorticity of the geostrophic flowHvortex tube stretching (by surface Ekman pumping)

$$f + \xi = constant$$

and the "constant" here contains the surface Ekman pumping due to the steady wind-stress curl