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Summary: The aim of this chapter is to describe an assortment of
waves that can be supported by an inviscid, homogeneous fluid in
rotation.

6-1 LINEAR WAVE DYNAMICS

Chiefly because linear equations are most amenable to methods of solution, it is wise to
gain insight into geophysical fluid dynamics by elucidating the possible linear processes
and investigating their properties before exploring more intricate, nonlinear dynamics.
The governing equations (Section 3-5) are essentially nonlinear; consequently, their
linearization can proceed only by imposing restrictions on the flows under consideration.

The Coriolis acceleration terms present in the momentum equations [(3-25) and
(3-26)] are, by nature, linear and need not be subjected to any approximation. This
situation is extremely fortunate because these are the central terms of geophysical fluid
dynamics. In contrast, the so-called advective terms (or convective terms) are quadratic
and undesirable at this moment. Hence, our considerations will be restricted to low-
Rossby-number situations:
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U
Ro = oL «<1. (6-1)
This is usually accomplished by restricting the attention to relatively weak flows (small
U), large scales (large L), or, in the laboratory, fast rotation (large Q). The terms
expressing the local time rate of change of the velocity (0u/0t and dv/0t) are linear
and are retained here in order to permit the investigation of unsteady flows. Thus, the
temporal Rossby number is taken as

1

Ro; ar ™ 1. (6-2)
Contrasting conditions (6-1) and (6-2), we conclude that we are about to consider slow
flow fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all,
for rapidly moving disturbances do not necessarily require large velocities. In other
words, information may travel faster than material particles, and when this is the case,
the flow takes the aspect of a wave field. A typical example is the spreading of
concentric ripples on the surface of a pond after the throwing of a stone; energy radiates
but there is no appreciable water movement across the pond. In keeping with the
foregoing quantities, a scale for the wave speed can be defined as the velocity of a
signal covering the distance L of the flow during the nominal evolution time 7, and, by
virtue of restrictions (6-1) and (6-2), it can be compared to the flow velocity:

L
C=7~QL>> U. (6-3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes
typical in geophysical flows, we will further restrict our attention to homogeneous and
inviscid flows, for which the shallow-water model (Section 4-3) is adequate. With all
the preceding restrictions, the horizontal momentum equations, (4-17) and (4-18),
reduce to

Ou _ __0onm

2 V= ox (6-4)
ov on

— + = - —_ 6_
5 T fu= ¢ 3y (6-5)

where f is the Coriolis parameter, g is the gravitational acceleration, u and v are the
velocity components in the x- and y-directions, respectively, and n is the surface
displacement obtained from the total fluid depth / by subtraction of the mean fluid depth
H (i.e.,, n = h — H). The independent variables are x, y, and ¢; the vertical coordinate
is absent, for the flow is depth-invariant (Chapter 4).

In terms of surface displacement, m, the continuity equation (4-19) can be ex-
panded in several groups of terms:
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on on on ou Ov Ou Ov
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if the mean depth H is constant (flat bottom). Introducing the scale AH for the vertical
displacement 1 of the surface, we note that the four groups of terms in the above
equation are, sequentially, on the order of
AH  UAH  UH UAH
T’ L’ L’ L~
According to (6-3), L/T is much larger than U, and the second and fourth groups of
terms are to be neglected compared with the first term, leaving us with the linearized

equation
on Oou Ov
— —_ —_ = -
ot H<ax 6y> 0 (6-6)
the balance of which requires AH/T on the order of UH/L or, again by virtue of (6-3),
AH «< H.

We are thus restricted to waves of small amplitudes.

The system of equations (6-4) through (6-6) governs the linear wave dynamics of
inviscid, homogeneous fluids under rotation. For the sake of simple notation, we will
perform the mathematical derivations only for positive values of the Coriolis para-
meter f and then state the conclusions for both positive and negative values of f.
The derivations with negative values of f are left as exercises. Before proceeding with
the separate studies of geophysical fluid waves, the student or reader not familiar
with the concepts of phase speed, wave-number vector, dispersion relation, and group
velocity is directed to Appendix A. A comprehensive account of geophysical waves can
be found in the book by LeBlond and Mysak (1978).

6-2 THE KELVIN WAVE

The Kelvin wave is a traveling disturbance that requires the support of a lateral
boundary. Therefore, it most often occurs in the ocean where it can travel along
coastlines. For convenience, we use oceanic terminology such as coast and offshore.

As a simple model here, consider a semi-infinite layer of fluid bounded below by
a horizontal bottom, above by a free surface, and on one side (say, the y-axis) by a
vertical wall (Figure 6-1). Along this wall (x = 0, the coast), the normal velocity must
vanish (u = 0), but the absence of viscosity allows a nonzero tangential velocity.

As he recounted in his presentation to the Royal Society of Edinburg in 1879, Sir
William Thomson (later to become Lord Kelvin) thought that the vanishing of the
velocity component normal to the wall suggested the possibility that it be zero every-
where. So, let us state, in anticipation,

u=0
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Figure 6-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere,
both waves travel with the coast on their right, but the accompanying currents differ.

and investigate the consequences. Although equation (6-4) contains a remaining deriva-
tive with respect to x, equations (6-5) and (6-6) contain only derivatives with respect
to y and time. Elimination of the surface displacement leads to a single equation for the

longshore velocity:
0%v _ , 0%
- = -7
o © oy (&7

where

c=./gH (6-8)

is identified as the speed of surface gravity waves in nonrotating shallow waters. The
preceding equation governs the propagation of one-dimensional nondispersive waves
and possesses the general solution

v=V(x,y+ct)+ V,(x, y —ct), (6-9)

which consists of two waves, one traveling toward decreasing y and the other in the
opposite direction. Returning to either (6-5) or (6-6) where u is set to zero, we easily
determine the surface displacement:

| H | H
n= - E Vi(x, y+et) + E Vy(x, y—ct).

(Any additive constant can be eliminated by a proper redefinition of the mean depth
H.) The structure of these functions ¥, and V, is then determined by the use of the
remaining equation, (6-4):

aV1=_ f Vl aV2=+ f

ax \/g_H ax \/g_H

or
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Vi=Vi(+ect) e ™%, Vo=V —ct) e,
where the length R, defined as

r=& _c

f f’

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed ¢ during one inertial

period (2n/f). For reasons that will become apparent later, this quantity is called the

Rossby radius of deformation, or, more simply, the radius of deformation.

Of the two independent solutions, the second increases exponentially with distance

from shore and is declared physically unfit. This leaves as the most general solution:

(6-10)

u=0 (6-11a)
v=./gH F(y +ct) e "8 (6-11b)
n=—-HF@y+ct) e "k, (6-11¢)

where F is an arbitrary function of its variable.

Because of the exponential decay away from the boundary, the Kelvin wave is said
to be trapped. Without the boundary, it is unbounded at large distances and thus cannot
exist; the length R is a measure of the trapping distance. In the longshore direction, the
wave travels without distortion at the speed of surface gravity waves. In the Northern
Hemisphere (f > 0, as in the preceding analysis), the wave travels with the coast on
its right; in the Southern Hemisphere, with the coast on its left. Note that, although the
direction of wave propagation is unique, the sign of the longshore velocity is arbitrary:
An upwelling wave (i.e., a surface bulge with 1 > 0) has a current flowing in the
direction of the wave, whereas a downwelling wave (i.e., a surface trough with ) < 0)
is accompanied by a current flowing in the direction opposite to that of the wave
(Figure 6-1).

In the limit of no rotation (f — 0), the trapping distance increases without bound
and the wave reduces to a simple gravity wave with crests and troughs oriented
perpendicularly to the coast.

Surface Kelvin waves (as described previously, and to be distinguished from
internal Kelvin waves, which require a stratification, see the end of Chapter 12) are
generated by the ocean tides and by local wind effects in coastal areas. For example, a
storm off the northeast coast of Great Britain can send a Kelvin wave that follows the
shores of the North Sea in a counterclockwise direction and eventually reaches the west
coast of Norway. Traveling in approximately 40 m of water and over a distance of 2200
km, it accomplishes its journey in about 31 h.

The decay of the Kelvin-wave amplitude away from the coast is clearly manifested
in the English Channel. The North Atlantic tide enters the Channel from the west and
travels eastward toward the North Sea (Figure 6-2). Being essentially a surface wave
in a rotating fluid bounded by a coast, the tide assumes the character of a Kelvin wave
and propagates while leaning against a coast on its right, namely, France. This explains
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Figure 6-2 Cotidal lines (dashed) with
time in lunar hours for the tide in the
English channel showing the eastward
progression of the tide from the North
Atlantic Ocean. Lines of equal tidal range
(solid, with values in meters) reveal larger
amplitudes along the French coast, namely
to the right of the wave progression in
accordance with Kelvin waves. (From
Proudman, 1953, as adapted by Gill, 1982.)

why tides are noticeably higher along the French coast than along the British coast a
few tens of kilometers across (Figure 6-2).

6-3 INERTIA-GRAVITY WAVES (POINCARE WAVES)

Let us now do away with the lateral boundary and relax the stipulation # = 0. The
system of equations (6-4) through (6-6) is kept in its entirety. With f constant and in
the presence of a flat bottom, all coefficients are constant, and a Fourier-mode solution
can be sought. With u, v, and 1 taken as constant factors times the function

i(bx + my — of
eits+my )’

where / and m are the wave numbers in the x- and y-directions, respectively, and o is
a frequency, the system of equations becomes algebraic:

—iou — fv= —igh, (6-12a)
—iov + fu = —igmm, (6-12b)
~ion + H (ilu + imv) =0. (6-12¢c)

This system admits the trivial solution # = v = 1 = 0 unless its determinant vanishes.
Thus waves occur only when the following condition is met:

o [0 —f2~gH (I*+m*)]=0. (6-13)

This condition, called the dispersion relation, provides the wave frequency in terms of
the wave-number magnitude k¥ = (/> + m?)"? and the constants of the problem. The
first root, @ = 0, corresponds to a steady state. Returning to (6-4) through (6-6) with
the time derivatives set to zero, we recognize the equations governing the geostrophic
flow described in Section 4-1. In other words, geostrophic flows can be interpreted as
arrested waves. The remaining two roots,

o=./f%+gHk? (6-14)

and its opposite, correspond to bona fide traveling waves, called Poincaré waves. In the



Sec. 6-4 Planetary Waves (Rossby Waves) 83

limit of no rotation (f= 0), the frequency is @ = k./ gH and the phase speed is
c=w/k=./gH. The waves become classical gravity waves. The same limit also
occurs at large wave numbers [ k% » f2?/gH, i.e., wavelengths much shorter than the
deformation radius defined in (6-10)]. This is not too surprising, since such waves are
too short to feel the rotation of the earth. At the opposite extreme of low wave numbers
(k? « f*/gH, i.e., wavelengths much longer than the deformation radius), the rotation
effect dominates, yielding @ ~ f. At this limit, the flow pattern is virtually laterally
uniform, and all fluid particles move in unison, each describing a circular inertial
oscillation, as described in Section 2-4. For intermediate wave numbers, the frequency
(Figure 6-3) is always greater than f, and the waves are said to be superinertial. Since
Poincaré waves exhibit a mixed behavior between gravity waves and inertial oscilla-
tions, they are also called inertia-gravity waves.

(O]

Poincaré wave
Kelvin wave
+f

tan a = VgH
o
0 -

Geostrophic flow =, _ fl2 [ 2

Poincaré wave

Figure 6-3 Recapitulation of the
dispersion relation of Kelvin and Poincaré
waves on the f-plane and on a flat bottom.

Because the phase speed ¢ = @/k depends on the wave number, wave components
of different wavelengths travel at different speeds, and the wave is said to be dispersive.
This is in contrast with the nondispersive Kelvin wave, whose signal travels without
distortion, irrespective of its profile. See Appendix A for additional information on these
notions.

6-4 PLANETARY WAVES (ROSSBY WAVES)

Kelvin and Poincaré waves are relatively fast waves, and we may wonder whether
rotating, homogeneous fluids could not support another breed of slower waves. Could
it be, for example, that the steady geostrophic flows, those corresponding to the zero-
frequency solution found in the preceding section, develop a slow evolution (frequency
slightly above zero) when the system is slightly modified? The answer is yes, and
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forming one class are the planetary waves, in which the time evolution is prompted by
the weak but important planetary effect.

As we may recall from Section 2-6, on a spherical earth (or planet or star, in
general), the Coriolis parameter, f, is proportional to the rotation rate, Q, times the sine
of the latitude, ¢:

f=2Q sin @.

Large wave formations such as alternating cyclones and anticyclones contributing to our
daily weather and, to a lesser extent, the Gulf Stream meanders span several degrees of
latitude; for them, it is necessary to consider the meridional change in the Coriolis
parameter. If the coordinate y is oriented northward and is measured from a reference
latitude @, (say, a latitude somewhere in the middle of the wave under consideration),
then ¢ = @, + y/a, where a is the earth’s radius (6371 km). Considering y/a as a small
departure, the Coriolis parameter can be expanded in a Taylor series:

£=2Q sin ¢, +2Q % cos Qo+ - - (6-15)

Retaining only the first two terms, we write in traditional notation

f=fotBoy, (6-16)

where f, = 2Q sin @, is the reference Coriolis parameter and B, = 2(Q/a) cos @, is
the beta parameter. Typical midlatitude values on Earth are f, = 8 x 10 “*+s~! and
Bo=2x10"" m~'es~ ' The Cartesian framework where the beta term is not
retained is called the f-plane, and that where it is retained is called the beta plane. The
next step in order of accuracy is to retain the full spherical geometry (which we will
avoid throughout this book). Rigorous justifications of the beta-plane approximation can
be found in Veronis (1963, 1981), Pedlosky (1987), and Verkley (1990).

Note that the beta-plane representation is validated at mid latitudes only if the B,y
term is small compared to the leading f;, term. In terms of the motion’s meridional
length scale L, this implies

p= EfO—L— <1, (6-17)

0

where the dimensionless ratio can be called the planetary number.
The governing equations, having become

Ou _ _ Onm

37 (fotBy)v=—g Bx’ (6-18a)

ov _ _ 0Onm

=7 +(fotByu=—g 2y (6-18b)
an Ou dv
ALY el -
31 H < e ay) 0, (6-18c)
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are now mixtures of small and large terms. The larger ones (f,, g, and H terms)
comprise the otherwise steady, f-plane geostrophic dynamics; the smaller ones (time
derivatives and P, terms) come as perturbations, which, although small, will govern the
wave evolution. In first approximation, the large terms dominate, and thus
u~—(gl/fy)om/0y and v ~ (g/f,) 01/ dx. Use of this first approximation in the small
terms of (6-18a) and (6-18b) yields

_& 0 . Bg On_ _  0n
7 ayor VT Y o T T8 o (6-19a)
g 9™ Bog ~ Om an
+2 L+ fou— — =g —. 6-19b
Jo oxor TV 5y T T8y (6-199)
These equations are trivial to solve with respect to ¥ and v:
g On g 0’n  Bog  Om
=-—= - ° + —_ 6-
fo oy 13 Bxor g1 7 oy (6-202)
2 0
v+ & 0n_ g 0 _ Pg Om (6-20b)

fo 0x f oyor g2 7 ox
These last expressions can be interpreted as consisting of the leading and first-correction
terms in a regular perturbation series of the velocity field. We identify the first term of
each expansion as the geostrophic velocity. By contrast, the next and small terms are
called ageostrophic.

Final substitution in continuity equation (6-18c) leads to a single equation for the
surface displacement:

Sy R = Vin-BR* =0, (6-21)

where V? is the two-dimensional Laplace operator and R = ./ gH /f, is the deformation
radius, defined in (6-10) and now suitably amended to be a constant. Unlike the original
set of equations, this last equation has constant coefficients and a solution of the Fourier
type, cos (Ix + my — ot), can be sought. The dispersion relation follows:

/

- _ 2
o= bR T E Ay

(6-22)

providing the frequency ® as a function of the wave-number components / and m. The
waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby,
who first proposed this wave theory to explain the movement of midlatitude weather
patterns. We note immediately that if the beta corrections had not been retained
(Bo = 0), the frequency would have been nil. This is the @ = 0 solution of Section 6-3,
which corresponds to a steady geostrophic flow on the f-plane. The absence of the other
two roots is explained by our approximation. Indeed, treating the time derivatives as
small terms (i.e., having in effect assumed a very small temporal Rossby number,
Ro; « 1), we have retained only the low frequency, the one much less than f,.
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That the frequency given by (6-22) is indeed small can be verified easily. With L
(~ 1/l ~ 1/m) as a measure of the wavelength, two cases can arise: either L <R or
L Z R, the frequency scale is then given, respectively, by

Shorter waves: L SR, o~ BoL (6-23)

BoR’

Longer waves: L2 R, o~ <BoL. (6-24)
In either case, our premise in (6-17) that B,L is much less than f;, implies that © is
much smaller than f;, (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the
zonal phase speed

TR+ mY) (6-23)

Cy =

@ - B0R2
l

is always negative, implying a phase propagation to the west (Figure 6-4). The sign of
the meridional phase speed ¢, = w/m is undetermined, since the wave number m may

®
LA
2 J1+R2m?
; t I
J 2m2
1+ g m Figure 64 Dispersion relation of
T planetary (Rossby) waves. The frequency @
is plotied against the zonal wave number /
at constant meridional wave number m. As
—— - the slope of the curve reverses, so does the
Eastward Westward Eastward direction of zonal propagation of energy.

have either sign. Thus, planetary waves can propagate only northwestward, westward,
or southwestward. Second, very long waves (1// and 1/m both much larger than R)
propagate strictly westward and at the speed

c =~ BoR?, (6-26)

which is the maximum wave speed allowed.
Lines of constant frequency, o, in the (/, m) wave-number space are circles defined

by
2 (2) 1
<1+_£:)> +m2=<4§)2 _"kT>’ (6-27)
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and are illustrated in Figure 6-5. Such circles exist only if their radius is a real
number—that is, if B2 > 4o?. This implies the existence of a maximum frequency

_ BoR
lmlmax - 2 >

(6-28)

beyond which planetary waves do not exist. The group velocity at which the energy of
a wave packet propagates, defined by (0 ®/ 9/, 0w/ 0 m), is the gradient of the function
o in the (I, m) wave-number plane (see Appendix A). It is thus perpendicular to the
circles of constant @. A little algebra reveals that the group-velocity vector is directed
inward, toward the center of the circle. Therefore, long waves (small / and m, point
near the origin) have westward group velocities, whereas shorter waves (larger / and
m, point on the opposite side of the circle) have eastward energy-propagation speeds.
This dichotomy is also apparent in Figure 6-4.

T mR
(I, m)
Direction of -
propagation N\~
Group
velocity IR
Figure 6-5 Geometric representation of
o, the planetary-wave dispersion relation. Each
circle corresponds to a single frequency,
o with frequency increasing with decreasing
radius. The group velocity of the (I, m)
s wave is a vector perpendicular to the circle
w=0 at point (/, m) and directed toward its center.

6-5 TOPOGRAPHIC WAVES

Just as small variations in the Coriolis parameter can turn a steady geostrophic flow into
slowly moving planetary waves, so can small bottom irregularities. Admittedly, topo-
graphic variations can come in a great variety of sizes and shapes, but for the sake of
illustrating the wave process in its simplest form, we will content ourselves with the
case of a weak and uniform bottom slope. We also return to the use of a constant
Coriolis parameter. This latter choice allows us to choose convenient directions for the
reference axes, and, in anticipation of an analogy with planetary waves, we align the
y-axis with the direction of the topographic gradient. We thus express the depth of the
fluid at rest as

H=H, +ayy, (6-29)



88 Chap. 6 Linear Barotropic Waves
where H, is a mean reference depth and a, is the bottom slope, required to be gentle
so that

oL

0

a= <1, (6-30)
where L is the horizontal length scale of the motion. The topographic parameter o plays
the role of the planetary number, defined in (6-17).

The bottom slope gives rise to new terms in the continuity equation. Starting with
(4-19) and expressing the instantaneous fluid layer depth as (Figure 6-6)

h(x’ Vs t) =H0 + (loy+ T](xa Vs t)a (6'31)
we obtain
on on on ou Ov du 0Ov
— + u——+tv—— |+ (H, + — 4+ —=)+q|—+—=—]+aw=0.
ot (u ox ay) (Ho aoy)<6x ay) n(@x oy %oV =0

Again, we strike the nonlinear terms invoking a very small Rossby number (much
smaller than the temporal Rossby number) for the sake of linear dynamics. The term

Surface _—1~
n
_____________ B
h Hy
J
Bottom ooy Figure 6-6 A layer of homogeneous fluid

over a sloping bottom and the attending
notation.

@,y can also be dropped as compared to H,, according to (6-30). With the momentum
equations (6-4) and (6-5), our present set of equations is

Ou __ _Om
- fu=—g 20, (6-32a)
ov on
— 4+ = —g —" -
Y fu g3y (6-32b)
on ou Ov
— + —_— = -
31 H°<6x ay>+a0v 0. (6-32¢)

In analogy with the system of equations governing planetary waves, the preceding set
contains both small and large terms. The large ones (terms including f, g, and H,)
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comprise the otherwise steady geostrophic dynamics, which correspond to a zero fre-
quency. But, in the presence of the small a, term in the last equation, the geostrophic
flow cannot remain steady, and the time-derivative terms come into play. We naturally
expect them to be small and, compared to the large terms, on the order of a. In other
words, the temporal Rossby number, Ro, = 1/QT, is expected to be comparable to a,
leading to wave frequencies

1
m~?~aQ~af<<f

that are very subinertial, just as in the case of planetary waves (where @ ~ Bf;).

Capitalizing on the smallness of the time-derivative terms, we take in first approxi-
mation the large geostrophic terms: u ~ —(g/f) 0n/0dy, v ~ + (g/f) 0n/0x. Substi-
tution of these expressions in the small time derivatives yields, to the next degree of
approximation:

__gon_g 09n

e v T (6-33a)
g 0 g 9'n

=4 = — - = — -

UTTF Tox 7 oyor (6-33b)

The relative error is only on the order of a.?. Replacement of the velocity components,
u and v, by their last expressions [(6-33a) and (6-33b)] in the continuity equation,
(6-32c¢), provides a single equation for the surface displacement 1, which to the leading
order is
on 0 0og Om
—— —R? — VIn+ —=0. 6-34

a1 ar ' " TF Tax (6-34)
(The ageostrophic component v is dropped from the a,v term for being on the order
of a?, whereas all other terms are on the order of a.) Note the analogy with equation
(6-21) that governs the planetary waves: It is identical, except for the substitution of
aog/f for — BoR?. Here, the deformation radius is defined as

 gH
R=NE&0 (6-35)
f
that is, the closest constant to the original definition, (6-10). A wave solution of the
type cos(Ix + my—wt) immediately provides the dispersion relation:

aog 1
= , 6-36
T TA R A md) (6-36)
the topographic analogue of (6-22). Again, we note that if the additional ingredient,
here the bottom slope a,, had not been present, the frequency would have been nil, and
the flow would have been steady and geostrophic. Because they owe their existence to
the bottom slope, these waves are called ropographic waves.
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The discussion of their direction of propagation, phase speed, and maximum
possible frequency follows that of planetary waves. The phase speed in the x-direc-
tion—that is, along the isobaths—is given by

O  Oyg 1

T T IYR @ Amy (6-37)
and has the sign of a, f. Thus, topographic waves propagate in the Northern Hemisphere
with the shallower side on their right. Because planetary waves propagate westward, or
with the north to their right, the analogy between the two kinds of waves is shallow-
north and deep-south. (In the Southern Hemisphere, topographic waves propagate with
the shallower side on their left, and the analogy is shallow-south, deep-north.)

The phase speed of topographic waves varies with the wave number; they are thus

dispersive. The maximum possible wave speed along the isobaths is
U g

f ’
which is the speed of the very long waves (I + m? — 0). With (6-36) in the form

_ Gog \? 2 Qg
(e __2me> + (Rm) _<2me> 1

we note that there exists a maximum frequency:

c= (6-38)

laogl
|0 max = :
I2fR]

(6-39)

The implication is that a forcing at a frequency higher than the preceding threshold
cannot generate topographic waves. The forcing generates either a disturbance that is
unable to propagate or higher-frequency waves, such as inertia-gravity waves. However,
such a situation is rare because, unless the bottom slope is very weak, the maximum
frequency given by (6-39) approaches or exceeds the inertial frequency f, and the
theory fails before (6-39) can be applied.

As an example, let us take the West Florida Shelf, which is in the eastern Gulf of
Mexico. There the ocean depth increases gradually offshore to 200 m over 200 km
(ag = 1073) and the latitude (27°N) yields f = 6.6 x 107° s~ ', Using an average
depth Hy = 100 m, we obtain R = 475 km and 0, = 1.6 X 10~ * s~ !. This maximum
frequency, corresponding to a mimimum period of 11 min, is larger than f, violates the
condition of subinertial motions and is thus meaningless. The wave theory, however,
applies to waves whose frequencies are much less than the maximum value; a
wavelength of 150 km along the isobaths (/=42 x 107° m™', m=0) yields
®=1.6x10"% s~ ! (period of 4.6 days) and a wave speed of ¢, = 0.38 m/s.

Where the topographic slope is confined between a coastal wall and a flat-bottom
abyss, such as for a continental shelf, topographic waves can be trapped, not unlike the
Kelvin wave. Mathematically, the solution is not periodic in the offshore, cross-isobath
direction but assumes one of several possible profiles (eigenmodes). Each mode has a
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corresponding frequency (eigenvalue). Such waves are called continental shelf waves.
The interested reader can find an exposition of these waves in LeBlond and Mysak
(1978).

6-6 ANALOGY BETWEEN PLANETARY
AND TOPOGRAPHIC WAVES

We have already discussed some of the mathematical similarities between the two kinds
of low-frequency waves. The object of this section is to go to the root of the analogy
and to compare the physical processes at work in both kinds of waves.

Let us turn to the quantity called potential vorticity and defined in (4-27). On the
beta plane and over a sloping bottom (oriented meridionally for convenience), the
expression of the potential vorticity becomes

_ fo*+ Boy + dv/3x — du/dy
i Hy +aoy+m ’

Our assumptions of a small beta effect and a small Rossby number imply that the
numerator is dominated by f,, all other terms being comparatively very small. Likewise,
H, 1s the leading term in the denominator because the bottom slope and the surface
displacements are both weak. A Taylor expansion of the fraction yields

1 ov Ou

q='1_l—o<fo+ﬁo}’*a;_}?y+‘a—‘$—%ﬂ)o (6-40)
We can immediately see that the planetary and topographic terms (B, and a, terms,
respectively) play identical roles. The analogy between the coefficients B, and
— ao fo/H, 1s identical to the one noted earlier between — PBoR? of (6-22) and ag/f,
of (6-36), since R = (gH,)'?/f,. The physical significance is the following: Just as the
planetary effect imposes a potential-vorticity gradient, with higher values toward the
north, the topographic effect, too, imposes a potential-vorticity gradient, with higher
values toward the shallower side.

The presence of such an ambient gradient of potential vorticity is what provides
the bouncing effect necessary to the existence of the waves. Indeed, consider Figure
6-7, where the first panel represents a north-hemispheric fluid (seen from the top) at
rest in a potential-vorticity gradient; think of the fluid as consisting of bands tagged by
various potential-vorticity values. The next two panels show the same fluid bands after
a wavy disturbance has been applied, in the presence of either the planetary or the
topographic effect.

Under the planetary effect (middle panel), fluid parcels caught in crests have been
displaced northward and have seen their ambient vorticity, fy + Boy, increase; to com-
pensate and conserve their initial potential vorticity, they must develop some negative
relative vorticity, that is, a clockwise spin. This is indicated by curved arrows. Similarly,
fluid parcels in troughs have been displaced southward, and the decrease of their
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Figure 6-7 Comparison of the physical mechanisms that propel planetary and topo-
graphic waves. Displaced fluid parcels react to their new environment by developing
either clockwise or counterclockwise vorticity. Intermediate parcels are entrained, and
the wave progresses forward.

ambient.vorticity is met with an increase of relative vorticity, that is, a counterclockwise
spin. Focus now on those intermediate parcels (marked by dots on the figure) that have
not been displaced initially; they are sandwiched between two counterrotating vortex
patches, and, like an unfortunate finger caught between two gears or the newspaper
zipping through the rolling press, they are entrained by the swirling motions and begin
to move in the meridional direction. From left to right on the figure, the displacements
are southward from crest to trough and northward from trough to crest. Southward
displacements set up new troughs whereas northward displacements generate new crests.
The net effect is a westward drift of the existing pattern. This explains why planetary
waves propagate westward.

In the third panel of Figure 6-7, the preceding exercise is repeated in the case of
an ambient potential-vorticity gradient due to a topographic slope. In a crest, a fluid
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parcel is moved into a shallower environment; the vertical squeezing causes a widening
of the parcel’s horizontal cross-section (see Section 4-4), which in turn is accompanied
by a decrease of relative vorticity. Similarly, parcels in troughs undergo vertical stretch-
ing, a lateral narrowing and an increase in relative vorticity. From there on, the story
is identical to that of planetary waves. The net effect is a propagation of the trough-crest
pattern with the shallow side on the right.

The analogy between the planetary and topographic effects has been found to be
extremely useful in the design of laboratory experiments. A sloping bottom in rotating
tanks can substitute for the beta effect, which would otherwise be impossible to model
experimentally. Caution must be exercised, however, for the substitution is acceptable
as long as the analogy holds. Three conditions must be met: absence of stratification,
gentle slope, and slow motion. If stratification is present, the sloping bottom will tend
to affect preferentially the fluid motions near the bottom, whereas the true beta effect
operates evenly at all levels. And, if the slope is not gentle and the motions are not
weak, the expression of potential vorticity cannot be linearlized as in (6-40), and the
analogy is invalidated.

PROBLEMS

6-1. Prove that Kelvin waves propagate with the coast on their left in the Southern Hemisphere.

6-2. The Yellow Sea between China and Korea (mean latitude: 37°N) has an average depth of
50 m and a coastal perimeter of 2600 km. How long does it take for a Kelvin wave to go
around the shores of the Yellow Sea?

6-3. Prove that at extremely large wavelengths, inertia-gravity waves degenerate into a flow field
where particles describe circular inertial oscillations.

6-4. An oceanic channel is modeled by a flat-bottom strip of ocean between two vertical walls.
Assume that the fluid is homogeneous and inviscid, and that the Coriolis parameter is
constant. Describe all waves that can propagate along such channel.

6-5. Consider planetary waves forced by the seasonal variations of the annual cycle. For
So=8x10"%s !} B, =2x10"" m~'-s~! R=1000 km, what is the range of ad-
missible zonal wavelengths?

6-6. Because the Coriolis parameter vanishes along the equator, it is usual in the study of tropical
processes to write

=By,

where y is the distance measured from the equator (positive northward). The linear wave
equations then take the form

6u_B _ on
o PoYvT &
ov on
-+ = —9g —
P Boyu g5,
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where u and v are the zonal and meridional velocity components, 1 is the surface displace-
ment, g is gravity, and H is the ocean depth. Explore the possibility of a wave traveling
zonally with no meridional velocity. At which speed does this wave travel and in which
direction? Is it trapped along the equator? If so, what is the trapping distance? Does this
wave bear any resemblance to a midlatitude wave ( f, not zero)?

6-7. Seek wave solutions to the nonhydrostatic system of equations with nonstrictly vertical
rotation vector:

Ou 1 op
- - + faw= —— %
YRR A Aol e
ov 1 0Op
IR = - &
ot fu po Oy
ow _ 1 op
ot f.u— Po —a—z

Ou + ov + ow

Ox oy 0z
The fluid is homogeneous (p = 0), inviscid (v = 0) and infinitely deep. Consider in par-
ticular the equivalent of the Kelvin wave (# = 0 at x = 0) and Poincaré waves.

SUGGESTED LABORATORY DEMONSTRATION

Equipment
Rotating tank, water, oil, and an agitator.

Experiment

Fill the rotating tank with water to a depth intermediate between the tank’s radius and
diameter; then cover the water with a layer of oil. (If the oil is not easily distinguishable
from the water, dye the water first.) Select an oil-layer depth such that the internal
radius of deformation [ (1 — Pt/ P waer ) 8Hon 1'2/2€2 is half the tank’s radius or less. Spin
the tank gradually to rotation rate £ and wait for equilibrium to be reached. Then,
agitate the oil layer (with a small stick or the like) gently along the tank’s periphery.
Watch the waves traveling. Note how a slow agitation (frequency less than 2€2) causes
waves that remain along the tank’s side (Kelvin waves), whereas quicker agitation
(frequency greater than 2Q)) leads to wave radiation across the entire tank (Poincaré
waves).



1824 - 1907
(Standing at right, in laboratory of Lord Rayleigh, left)

Named professor of natural philosophy at the University of Glasgow, Scotland, at
age 22, William Thomson became quickly regarded as the leading inventor and scientist
of his time. In 1892, he was named Baron Kelvin of Largs for his technological and
theoretical contributions leading to the successful laying of the transatlantic cable. A
friend of Joule’s, he helped establish a firm theory of thermodynamics and first defined
the absolute scale of temperature. He also made major contributions to the study of heat
engines. With Hermann von Helmholtz, he estimated the ages of the earth and sun and
ventured in fluid mechanics (see Figures 11-2 and 11-3). His theory of the so-called
Kelvin wave was published in 1879 (under the name William Thomson). His more than
300 original papers left hardly any aspect of science untouched. He is quoted as saying
that he could understand nothing of which he could not make a model. (Photo by
A. G. Webster.)
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