PART IV

COMBINED ROTATION
AND STRATIFICATION EFFECTS

12

La yered Models

Summary: Advantage is taken of the assumption of density conser-
vation by fluid parceis to change the vertical coordinate from depth
to density. The new equations allow for a clear discussion of poten-
tial-vorticity dynamics and lend themselves to discretization in the
vertical. The result is a layered model. Note: To avoid probiems of
terminology, we restrict ourselves here to the ocean. The case of the
atmosphere follows with the replacement of depth by height and
density by potential density.

12-1 FROM DEPTH TO DENSITY

Since a stable stratification requires a monotonic increase of density downward, density
can be taken as a surrogate for depth and used as the vertical coordinate. If density is
conserved by individual fluid parcels, as it is approximately the case for most geophysi-
cal flows, considerable mathematical simplification follows, and the new equations
present a definite advantage in a number of situations. It is thus worth expounding on
this change of variables at some length.
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170 Chap. 12 Layered Models

In the original Cartesian system of coordinates, z is an independent variable and
density p (x, y, z, t) is a dependent variable, giving the water density at location (x, y),
time ¢, and depth z. In the transformed coordinate system (x, y, p, t), density becomes
an independent variable and z (x, y, p, t) has become the dependent variable, giving the
depth at which density p is found at location (x, y) and at time ¢.

From a differentiation of the expression a = a (x, y, p(x, y, z, t), t), where a is
any variable, the rules for the change of variables follow:
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Then, the application of a = z allows the change of derivatives of p at z constant to
those of z at p constant and to write
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with similar expressions where x is replaced by y or z, and
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Here, subscripts denote derivatives. Figure 12-1 depicts a geometrical interpretation of
rule (12-1).
The hydrostatic equation (3-27) readily becomes
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Figure 12-1 Geometrical interpretation of
equation (12-1). The x-derivatives of any
function a at constant depth and at constant
density are, respectively,
[a(B) — a(A4))/Ax and [a(C) ~ a(A4))/Ax.
The difference between the two,
[a(C) — a(B)]/Ax, represents the vertical
derivative of a, [a(C) — a(B)]/Az, times
the slope of the density surface, Az/Ax.
Finally, the vertical derivative can be split
- - as the ratio of the p-derivative of q,

Ax [a(C) — a(B))/Ap, by Az/Ap.
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and leads to the following horizontal pressure gradient:
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Similarly, 8p/ 0y at constant z becomes OP/Qy at constant p. The new function P,
which plays the role of pressure in the density-coordinate system, is defined as
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P=p+pgz (12-4)

and is called the Montgomery potential, in honor of Raymond B. Montgomery, who
introduced it for the first time in 1937. Later on, when there is no ambiguity, this
potential may loosely be called pressure. With P replacing pressure, the hydrostatic
balance, (12-3), now takes a more compact form:
oP
— =gz, 12-5
5p &7 (12-5)
further indicating that P is the natural substitute for pressure when density is the vertical
coordinate. Beyond this point, all derivatives with respect to x, y, and time are meant
to be taken at constant density, and the subscript p is no longer necessary.
In the absence of diffusion, the density-conservation equation, (3-29), can be
solved for the vertical velocity
0z + 0z v 0z
w=—+u — -—.
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This last equation simply tells that the vertical velocity is that necessary for the particle
to remain at all times on the same density surface. Armed with expression (12-6), we
can now eliminate the vertical velocity throughout the set of governing equations. First,
the material derivative (3-4) assumes a simplified, two-dimensional-like form:
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where the derivatives are now taken at constant p. The absence of a third, verticallike
advective term physically results from the assumed absence of motion across density
surfaces.

In the absence of friction, the horizontal-momentum equations (3-25) and (3-26)
become
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We note that they are almost identical to their original versions. The differences are
nonetheless important: The material derivative has been reduced to (12-7), the pressure
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has been replaced by the Montgomery potential P defined in (12-4), and all temporal
and horizonta] derivatives are taken at constant density. Note, however, that the com-
ponents » and v are still the horizontal velocity components and are not measured along
sloping density surfaces. This property is important for the proper application of lateral
boundary conditions.

To complete the set of equations, it remains to transform the continuity equation,
(3-28), according to rules (12-1) and (12-2). Further elimination of the vertical velocity
by using of (12-6) leads to
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where the quantity 4 is introduced for convenience and is proportional to 8z/0p, the
derivative of depth with respect to density. For convenience, we want /# to have the
dimension of height, so we introduce an arbitrary but constant density difference, A p,
and define
Oz

h Ap op (12-11)
In this manner, 4 can be interpreted as the thickness of a fluid layer between the density
p and p + Ap. At this point, the value of Ap is totally arbitrary, but later, in the
development of layered models, it will be chosen as the density difference between
adjacent layers.

The transformation of coordinates is now complete. The new set of governing
equations consists of the two horizontal-momentum equations (12-8) and (12-9), the
hydrostatic balance (12-5), the continuity equation (12-10), and the relation (12-11). It
thus forms a closed 5-by-5 system for the dependent variables, u, v, P, z, and . Once
the solution is known, the pressure p and the vertical velocity w can be recovered from
(12-4) and (12-6). .

Since the aforementioned work of Montgomery (1937), the substitution of density
as the vertical variable has been implemented in a number of applications, especially
by Robinson (1965) in a study of inertial currents, by Hodnett (1978) in a study of the
permanent oceanic thermocline, and by Sutyrin (1989) in a study of isolated eddies. A
review in the meteorological context is provided by Hoskins et al. (1985).

12-2 POTENTIAL VORTICITY

Potential vorticity is a dynamic quantity conserved by individual fluid parcels in invis-
cid, nondiffusive flows. Our earlier study of homogeneous rotating fluids (Section 4-4)
led to an expression for potential vorticity, which was then interpreted as circulation
per volume. We will now show that the same expression is applicable to stratified
rotating fluids if the quantity 4 is no longer the fluid depth but is the variable defined
in (12-11). The interpretation of potential vorticity as circulation per volume and the
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conservation principle remain unchanged. The following presentation is a variant on the
original derivation by Rossby (1940).

A cross-differentiation of the horizontal-momentum equations (12-8) and (12-9)
eliminates the pressure and yields
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while the continuity equation (12-10) can be recast into a similar form:
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Consider now a volume element of cross-section ds sandwiched between the density
surfaces p and p + Ap. It is a straightforward geometric result that, due to lateral
divergence or convergence, the parcel’s horizontal cross-section ds will expand or shrink
according to (see Section 4-4)
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Combining (12-14) first with (12-12) and then with (12-13) yields the following
conservation relations:
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The former states that the circulation within the parcel and about the vertical axis is
conserved, whereas the latter states that the volume of fluid within the element remains
unchanged. Consequently, a fluid parcel that is shrinking laterally (i.e., decreasing ds)
will become taller (increasing #) and acquire a greater vorticity (increasing f +
Ov/0x — Ou/0y). Similarly, a lateral expansion is accompanied by a reduction in
thickness and vorticity. The scenario is illustrated in Figure 12-2.

Now, if both circulation and volume are conserved, so must be their ratio; that is,
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_ f+0v/ox —0uldy
p .
This quantity, called the potential vorticity [ see (4-27)], can be thought as the circu-

lation per volume. It is conserved because both circulation and volume are conserved.
In most applications, potential vorticity takes precedence over both circulation and

(12-18)
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Figure 12-2 Conservation of volume and circulation in a fluid parcel undergoing
divergence (squeezing) or convergence (stretching). The products & ds and (f + ) ds
are conserved during the transformation.

volume because its evaluation does not involve the fluid parcel’s lateral cross-section.
Recall that in the present derivation, the x- and y-derivatives are not taken horizontally
but along the sloping density surfaces and that the variable 4 is not a true depth but a
quantity defined as proportional to the derivative of depth with respect to density.

In closing this section, it is worth noting that the expression of potential vorticity
in the original Cartesian coordinates is much more complicated. We will simply state
its expression without demonstration:
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12-3 LAYERED MODELS

A layered model is an ideal fluid system that consists of a finite number of moving
layers, stacked one upon another and each having a uniform density. Its evolution is
governed by a discretized version of the system of equations in which density, taken as
the vertical variable, is not varied continuously but is restricted to assume a finite
number of values. A layered model is the density analogue of a level model, which is
obtained after discretization of the vertical variable z.

Each layer (i = 1 to n, where n is the number of layers) is described by its density
p; (unchanging), thickness 4;, Montgomery potential P,, and horizontal velocity com-
ponents u; and v;. The surface marking the boundary between two adjacent layers is
called an interface and is described by its elevation z, , measured (negatively downward)
from the mean surface level. The displaced surface level is called z, (Figure 12-3a).
The interfacial heights can be obtained recursively from the bottom,

z,= —H, (12-20a)
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Figure 12-3 A layered mode! with » active layers: (a) with free surface, (b) with rigid
lid.

upward:
z;io1=2;, +h;,, i=ntol. (12-20b)

This geometrical relation can be regarded as the discretized version of (12-11) used to
define A.

In a similar manner, the discretization of hydrostatic relation (12-5) provides
another recursive relation, which can be used to evaluate the Montgomery potential P
from the top,

Pl =pa + pOgZOs (12'218')
downward:
P...=P, +Apgz;,, i=1ton-—1. (12-21b)

To write (12-21a), we have selected the uppermost density p, as the reference density
po- Gradients of the atmospheric pressure p, typically play no significant role, and the
contribution of p, to P, may be omitted. If the layered model is for the lower
atmosphere, p, represents a pressure distribution aloft and may again be taken as an
inactive constant and thus dropped.
When the reduced gravity,
Ap

g'=—a3, (12-22)
Po

is introduced for convenience, the recursive relations (12-20b) and (12-21b) lead to
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simple expressions for the interfacial heights and Montgomery potentials. For up to three
layers, these are as follows:

One layer: (12-23)
zy=h, — H Py =pog(h, — H)

z,=—H

Two layers: (12-24)
zZo=h, +h, - H P, =peg(hy +h, — H)

z,=h,— H P, =pogh, + po(g + g )(hy — H)

z,=—H

Three layers: (12-25)
zg=h,th,+hy,— H P =pog(h, +hy, + hy — H)

zy=hy, +hy,—H P, =pogh, + po(g+g)(hy, + hy — H)

2 =h; —H Py =pogh, + po(g +g')h; + po(g+2¢')(h; — H)
zy=—H.

In certain applications, it is helpful to discard the surface gravity waves, which
travel much faster than internal waves and near-geostrophic disturbances. To do so, we
eliminate the flexibility of the surface by imagining that the system is covered by a
rigid lid (Figure 12-3b). This is called the rigid-lid approximation. In such a case, z,
is equal to zero, and there are only (n — 1) independent layer thicknesses. In return,
one of the Montgomery potentials cannot be derived from the hydrostatic relation. If
this potential is chosen as the one in the lowest layer, the recursive relations yield the ‘
following: y

One layer: (12-26)
z, = —h, P, variable

h, = H, fixed

Two layers: - (12-27)
z,=—h P, =P, + pog'h,

z,=—h, —h, P, = vanable

h, + h, = H, fixed

Three layers: (12-28)
z, = —h, P, =P, + pog'(2h, + h,)

z,=—h —h, P; =P; +pog'(hy +h;)
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23=_h1_h2—h3 P3=Vanable
h, + h, + hy = H, fixed.

In some other instances, mainly in the investigations of upper-ocean processes, the
lowest layer can be imagined to be infinitely deep and at rest. Keeping n as the number
of moving layers, we assign to this lowest (abyssal) layer the index (n + 1). The
absence of motions there implies a uniform Montgomery potential, the value of which
can be set to zero without loss of generality: P, ., = 0. For up to three active layers, the
recursive relations provide (Figure 12-4) the following:

One layer: (12-29)
z, = —hy P, =pg'h

Two layers: (12-30)
zy = — hy P, =pog’' (2h, + h,)

z;=—h, — h, P, =pog'(h, +4,)

Three layers: (12-31)
zy=—h, P, =pog’ (3hy +2h, + hy)

z,= —h —hy P, =pog' (Qh, + 2k, + k)

z3=—h, —hy, — hy4 Py =pog'(hy + hy +hy).

Because these expressions do not involve the full gravity g but only its reduced value
g’, this type of model is known as a reduced-gravity model.

Generalization to more than three moving layers is straightforward. When a con-
figuration with few but physically relevant layers is desired, the preceding derivations
may be extended to nonuniform density differences from layer to layer. Mathematically,
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Pn+1=0 no motion Figure 12-4 A reduced-gravity layered

Pn+1 =Po+nAp  model.
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this would correspond to a discretization of the vertical density axis into unevenly
spaced gridpoints.

Once the layer thicknesses, interface depths, and layer pressures (more precisely,
the Montgomery potentials) are all related, the system of governing equations is com-
pleted by gathering the horizontal-momentum equations (12-8) and (12-9) and the
continuity equation (12-10), each written for every layer. The expression for potential
vorticity, (12-18), is unchanged, except that the denominator is now the finite thickness
of the layer for which it is constructed.

In Section 9-5, the length L = NH/Q was derived as the horizontal scale at which
rotation and stratification play equally important roles. It is noteworthy at this point to
formulate the analogue for a layered system. Introducing H as a typical layer thickness
in the system (such as the maximum depth of the uppermost layer at some initial time)
and A p as a density difference between two adjacent layers (such as the top two), an
approximate expression of the stratification frequency squared is

g dp g Ap_¢g
Ni=-=> —~ = —— =2 12-32
po dz po H H ( )
where g’ = g Ap/p, is the reduced gravity defined earlier. Substitution of (12-32) in
the definition of L yields L ~ (g'H )'?/Q. Finally, because the ambient rotation rate Q
enters the dynamics only via the Coriolis parameter f, it is more convenient to introduce
the length scale
g'H
f 3
called the radius of deformation. To distinguish this last scale from its cousin (6-10),
derived for free-surface homogeneous rotating fluids (where the full gravitational ac-
celeration g appears), it is customary in situations where ambiguity could arise to use
the expressions internal radius of deformation and external radius of deformation for
(12-33) and (6-10), respectively. Because density differences within geophysical fluids
are typically a percent or less of the average density, the internal radius is one-tenth the
external radius and usually less.
When the model consists of a single moving layer above a motionless abyss, the
governing equations reduce to

Ou Ou Ou , Oh
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37 1 ox (hu) 3y (hv) =0 (12-36)

The subscripts indicating the layer have become superfluous and have been deleted. The
coefficient g’ = g(p, — p, )/ P, is called the reduced gravity. Except for the replace-
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ment of the full gravitational acceleration, g, by its reduced fraction, g’, this system of
equations is identical to that of the shallow-water model (Section 4-3) and is thus called
the shallow-water reduced-gravity model. Because the vertical simplicity of this model
permits the investigation of a number of horizontal processes with a minimum of
mathematical complications, it will be used in the following chapters. Finally, recall that
the Coriolis parameter, f, can be taken as either a constant ( f-plane) or as a function
of latitude (f = f, + By, beta plane).

PROBLEMS

12-1. Generalize the theory of the coastal Kelvin wave (Section 6-2) to the two-layer system
over a flat bottom and under a rigid lid. In particular, what are the wave speed and trapping
scale?

12-2. In the case of the shallow-water reduced-gravity model, derive an energy-conservation
principle. Then, separate the kinetic and potential energy contributions.

12-3. Show that a steady flow of the shallow-water reduced-gravity system conserves the Ber-
noulli function B = g'h + (u? + v?)/2.

12-4. Establish the equations governing motions in a one-layer model above an uneven bottom
and below a thick, motionless layer of slightly lesser density.

12-5. Seek a solution to the shallow-water reduced-gravity model of the type A(x, ) =
A2 +2B()x+C(), u(x, )=U,()x+ Us(2), v(x, )=V ()x+ Vo(1). To
what type of motion does this solution correspond? What can you say of its temporal
variability? (Take f = constant.)
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1910 - 1988

A student of Carl-Gustav Rossby, Raymond Braislin Montgomery earned his fame
as a brilliant descriptive physical oceanographer. Applying dynamic results derived by
his mentor and other contemporary theoreticians to observations, he developed precise
means of characterizing water masses and currents. By his choice of analyzing obser-
vations along density surfaces rather than along level surfaces, an approach that led him
to formulate the potential now bearing his name, Montgomery was able to trace the
flow of water masses across ocean basins and to arrive at a lucid picture of the general
oceanic circulation. Montgomery’s lectures and published works, marked by an unusual
attention to clarity and accuracy, earned him great respect as a critic and reviewer.
(Photo by Hideo Akamatsu; courtesy of Mrs. R. B. Montgomery.)



