PART Il
STRATIFICATION EFFECTS

Stratification
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Summary: After having studied the effects of rotation in homo-
geneous fluids, we now turn our attention toward the other distinc-
tive feature of geophysical fluid dynamics, namely, stratification. A
basic measure of stratification, the Brunt—Viisila frequency, is intro-
duced, and the accompanying dimensionless ratio, the Froude num-
ber, is defined and given a physical interpretation.

9-1 INTRODUCTION

As Chapter 1 stated, problems in geophysical fluid dynamics concern fluid motions with
one or both of two attributes, namely, ambient rotation and stratification. In the preced-
ing chapters, attention was devoted exclusively to the effects of rotation, and stratifica-
tion was avoided by the systematic assumption of a homogeneous fluid. We noted that
rotation imparts to the fluid a strong tendency to behave in a columnar fashion—to be
vertically rigid.

By contrast, a stratified fluid, consisting of fluid parcels of various densities, will
tend under gravity to arrange itself so that the higher densities are found below lower
densities. This vertical layering introduces an obvious gradient of properties in the
vertical direction, which affects—among other things—the velocity fieid. Hence, the
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124 Chap. 9 Stratification

vertical rigidity induced by the effects of rotation will be attenuated by the presence of
stratification.

Because stratification induces a certain degree of decoupling between the various
fluid masses (those of different densities), stratified systems typically contain more
degrees of freedom than homogeneous systems, and we anticipate that the presence of
stratification permits the existence of additional types of motions. When the stratifica-
tion is mostly vertical (e.g., layers of various densities stacked on top of one another),
gravity waves can be sustained internally (Chapter 10). When the stratification also has
a horizontal component, additional waves can be permitted, and, if these grow at the
expense of the basic potential energy available in the system, instabilities may arise
(Chapter 16).

9-2 STATIC STABILITY

Let us first consider fluids in static equilibrium. Such lack of motion requires the
absence of lateral forces and, consequently, horizontal homogeneity. Stratification is
then purely vertical. '

It is intuitively obvious that if the heavier fluid parcels are found below the lighter
fluid parcels, the fluid is stable, whereas if heavier parcels lie above lighter ones, the
system is apt to overturn, and the fluid is unstable. Let us now verify this intuition.
Take a fluid parcel at a height z above a certain reference level, where the density is
p(z), and displace it vertically to the higher level z + h, where the ambient density is
p(z + h). If the fluid is incompressible, our displaced parcel retains its former density
despite a slight pressure change, and at that new level feels a buoyancy force equal to

glp(z+h)—p(2)1V,

where V is the volume of the parcel. As it is written, this force is positive if it is directed
upward. Newton’s law (mass times acceleration equals force) yields

2

d*h
PV oz =glpz+h) —p()]V. (9-1)

Now, geophysical fluids are generally only weakly stratified; the density variations,
although sufficient to drive or affect motions, are nonetheless relatively small compared
to the average or reference density of the fluid. This remark was the essence of the
Boussinesq approximation (Section 3-3). In the present case, this fact allows us to

replace p(z) on the left-hand side of (9-1) by the reference p, and to use a Taylor
expansion to approximate the density difference on the right by

dp

— h.
dz

p(z+ h)—p(2z) ~

After a division by V, equation (9-1) reduces to
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d*h g dp

it p & T -2
which shows that two cases can arise. The coefficient — (g/p,) dp/dz is either positive
or negative. If it is positive (dp/dz < 0, corresponding to a fluid with the greater
densities below the lesser densities), we can define the quantity N? as

Ni—-8 & (9-3)
po dz

and the solution to the equation has an oscillatory character, with frequency N. Physi-
cally, this means that, when displaced upward, the parcel is heavier than its surround-
ings, feels a downward recalling force, falls down, and, in the process, acquires a
vertical velocity; upon reaching its original level the particle’s inertia causes it to go
farther downward and to become surrounded by heavier fluid. The parcel, now buoyant,
is recalled upward, and oscillations persist about the equilibrium level. The quantity N,
defined by the square root of (9-3), provides the frequency of the oscillation and can
thus be termed the stratification frequency. It is, however, more commonly called the
Brunt-Viisdld frequency, in recognition of the two scientists who were the first to
highlight the importance of this frequency in stratified fluids. (See Brunt’s biography
at the end of this chapter.)

If the coefficient in equation (9-2) is negative (i.e., dp/dz > 0, corresponding to a
top-heavy fluid configuration), the solution exhibits an exponential growth, a sure sign
of instability. The parcel displaced upward is surrounded by heavier fluid, finds itself
buoyant, and moves farther and farther away from its initial position. Obviously, small
perturbations will ensure not only that the single displaced parcel will depart from its
initial position, but that all other fluid parcels will likewise participate in a general
overturning of the fluid until it is finally stabilized, with the lighter fluid lying above
the heavier fluid. If, however, a permanent destabilization is forced onto the fluid, such
as by heating from below or cooling from above, the fluid will remain in constant
agitation, a process called convection.

In this and the following chapters, we will restrict our attention to stably stratlﬁed
fluids, for which the stratification frequency, N, defined from (9-3), exists.

9-3 A NOTE ON ATMOSPHERIC STRATIFICATION

In a compressible fluid, such as the air of our planetary atmosphere, density can change
in one of two ways: by pressure changes or by internal-energy changes. In the first case,
a pressure variation resulting in no internal-energy change (i.e., an adiabatic compres-
sion or dilation) is accompanied by both density and temperature variations: All three
quantities increase (or decrease) simultaneously, though not in equal proportions. If the
fluid is made of fluid parcels all having the same internal-energy content, the lower
parcels, feeling the weight of those above them, will be more compressed than those in
the upper levels, and the system will appear stratified, with the denser and warmer fluid
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underlying the lighter, colder fluid. But such stratification cannot be dynamically rel-
evant, for if parcels are interchanged adiabatically, they adjust their density and tem-
perature according to the local pressure, and the system is left unchanged.

In contrast, internal-energy changes are dynamically important. In the atmosphere,
such variations occur because of a heat flux (such as heating in the tropics and cooling
at high latitudes, or according to the diurnal cycle) or because of the variations in air
composition (such as moisture content). Such variations among fluid parcels do remain
despite adiabatic compression/dilation and cause density differences that drive motions.
It is thus imperative to distinguish, in a compressible fluid, the density variations that
are dynamically relevant from those that are not. Such separation of density variations
leads to the concept of potential density.

First, we consider a neutral (adiabatic) atmosphere—that is, one consisting of all
air parcels having the same internal energy. Further, let us assume that the air, a mixture
of various gases, behaves as a single perfect gas. Under these assumptions, we can write
the equation of state and the adiabatic conservation law:

P =RpT, (9-4)

p Py
— = 9-5
Do (Po> ’ 9-3)

where p, p, and T are, respectively, the pressure, density, and absolute temperature (in
contrast with the preceding chapters, the variables p and p here denote the full pressure
and density); R=C, — C, and y = C,/C, are the constants of a perfect gas. Finally,
Po and p, are reference pressure and density characterizing the level of internal energy
of the fluid; the corresponding reference temiperature T, is obtained from (9-4)—that
is, Ty = po/Rpy. Expressing both pressure and density in terms of the temperature, we

obtain
T \vtx—1)
2-(3)
0 0
p T \V&-1D
0 0

Without motion, the atmosphere is in static equilibrium, which requires hydrostatic
balance:
dp
dz

Elimination of p and p by use of (9-6) and (9-7) yields a single equation for the
temperature:

—pg. (9-8)

ar _~ y-1 g
dz Yy R

=-£ (9-9)
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In the derivation, it was assumed that p,, p,, and thus T, are not dependent on z, in
agreement with our premise that the atmosphere is composed of parcels with identical
internal-energy contents. Equation (9-9) states that the temperature in such atmosphere
must decrease with increasing height at the uniform rate g/C, ~ 10 K/km. This gradient
is called the adiabatic lapse rate. Physically, lower parcels are under greater pressure
than higher parcels and thus have higher densities and temperatures. This explains why
the air is colder on mountain tops than at lower levels.

It almost goes without saying that the departures from this adiabatic lapse
rate—and not the total temperature gradients—are to be considered in the study of
atmospheric motions. We can demonstrate this clearly by redoing here, with a com-
pressible fluid, the analysis of a vertical displacement performed in the previous section
with an incompressible fluid. Consider a vertically stratified gas with pressure, density,
and temperature, p, p, and 7, varying with height z but not necessarily according to
(9-9); that is, the heat content in the fluid is not uniform. The fluid is in static
equilibrium so that equation (9-8) is satisfied. Take a parcel at height z; its properties
are p(z), p(z), and T(z). Imagine that this fluid parcel is now displaced adiabatically
upward over a small distance 4. According to the hydrostatic equation, this results in a
pressure change dp = — pgh, which causes density and temperature changes given by
the adiabatic constraints (9-5) and (9-6): 8p = — pgh/yRT and 8T = — (y — 1) gh/YR.
Thus, the new density is p’ = p + 8p = p — pgh/YRT. But at that new level, the ambient
density is given by the stratification: p(z + h) ~ p(z) + (dp/dz) h. The displaced par-
cel experiences an upward force equal to the buoyancy force, which per volume is

F= g[ pambienl - ppamel ]

=glp(z+h)—p']

dp . pg
~gl—+—|h.
g(dz yRT)h

In terms of the temperature, this force is

T
F:—Bg(d +-g—> dz.

T\dz
If
d
N? = — %(d—g + ——Y‘;fT) (9-10a)
dT
= %(E + Ci> (9-10b)
P

is a positive quantity, this force recalls the particle towards its initial level, and the
stratification is stable. As we can clearly see, the relevant quantity is not the total
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temperature gradient but the departure from the adiabatic gradient g/C,. As in the
previous case of a stably stratified incompressible fluid, the quantity N is the frequency
of vertical oscillations. It is called the stratification, or Brunt—Viisild, frequency.

In order to avoid the systematic subtraction of the adiabatic gradient from the
temperature gradient, the concept of potential temperature is introduced. The potential
temperature, denoted by 6, is defined as the temperature that the parcel would have if
it were brought adiabatically to a given reference pressure. (In the atmosphere, this
reference is usually taken as a nominal ground pressure of 1030 millibars = 1.03 x 10°

N/m?.) From (9-6), we have
p <T>7/(7— )]
Do 0

=(r =7
6=T(;‘D—> R (9-11)
0

The corresponding density is called the potential density, denoted by o:
bl Vi
G = p<i> . (9-12)
Po
The definition of the stratification frequency (9-10a) takes the form

and hence

g do
Ni=—2= —, 9-13
i (5-13)
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Comparison with the earlier definition, (9-3), immediately shows that the substitution
of potential density for density allows us to treat compressible fluids as incompressible.

During daytime and above land, the lower atmosphere is typically heated from
below by the warmer ground and is in a state of turbulent convection. The convective
layer not only covers the entire region where the time-averaged gradient of potential
temperature is negative, but it also penetrates into the region above where it is positive
(Figure 9-1). Consequently, the sign of N? at a particular level is not unequivocally
indicative of stability at that level. For this reason, Stull (1991) advocates the use of a
nonlocal criterion to determine static stability. Those considerations apply equally well
to the upper ocean under surface cooling.

9-4 THE IMPORTANCE OF STRATIFICATION:

N2

(I
|

THE FROUDE NUMBER

1t was established in Section 1-5 that rotational effects are dynamically important when
the Rossby number is on the order of unity or less. This number compares the distance
traveled horizontally by a fluid parcel during one revolution ( ~ U/Q) with the length
scale over which the motions take place (L). Rotational effects are important when the
former is less than the latter. By analogy, we may ask whether there exists a similar
number measuring the importance of the stratification. From the remarks in the preced-
ing sections, we can anticipate that the stratification frequency, N, and the height scale,
H, of a stratified fluid will play roles similar to those of Q and L in rotating fluids.
To illustrate how such a dimensionless number can be derived, let us consider a
stratified fluid of stratification frequency N flowing horizontally at a speed U and
encountering an obstacle of width L and height A (Figure 9-2). We can think of a wind
in the lower atmosphere blowing over a mountain range. The presence of the obstacle

Figure 9-2 Situation in which a stratified
fluid encounters an obstacle, forcing some
fluid parcels to move vertically against

-~ gravity.

forces some of the fluid to be displaced vertically and, hence, requires some supply of
gravitational energy. Stratification will act to restrict or minimize such vertical displace-
ments in some way, forcing the flow to pass around rather than over the obstacle. The
greater the restriction, the greater the importance of stratification.
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The time passed in the vicinity of the obstacle is approximately the time spent by
a fluid parcel to cover the horizontal distance L at the speed U, that is, T'= L/U. If the
vertical velocity is on the order of W (to be determined), the corresponding vertical
displacements are Az = WT = WL/U. In the presence of stratification p(z), these dis-
placements cause density perturbations on the order of

dp
ap=|22| A
P dz z
_ PN WL
g U’

where p(z) is the fluid’s vertical density profile upstream. In turn, these density
variations give rise to pressure disturbances that scale, via the hydrostatic balance, as

P = gHAp

_ poNHLW
T .

By virtue of the balance of forces in the horizontal, the pressure-gradient force must be
accompanied by a change in the fluid velocity [# Ou/0x + v 0u/ 0y ~ (1/p,) Op/0x]:
yr= £ _NPHLW

Po U
From this last expression, the ratio of vertical convergence, #/H, to horizontal diver-
gence, U/L, is found to be
WIH U?
_——= 9-14
UL N*H? ( )
We immediately note that if U is less than the product NH, W/H must be less than
U/L, implying that convergence in the vertical cannot fully meet horizontal divergence.
Consequently, the fluid is forced to be deflected horizontally so that the term Ou/0x
can be met by — 0v/0y better than by — 8w/ 0z. The stronger the stratification, the
smaller is U compared to NH and, thus, W/H compared to U/L. The stronger the
stratification, the weaker the vertical velocity and vertical displacements:

Az WL v?

— == . 9-15
H UH N’H? ( )
From this argument, we conclude that the ratio
U
= 9-16
Fr=—r, (9-16)

called the Froude number, is the measure of the importance of stratification. The rule
is: If Fr <1, stratification effects are important; the smaller Fr, the more important
these effects are.
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The analogy with the Rossby number of rotating fluids,

U
Ro aL’ (9-17)
where Q is the angular rotation rate and L is the horizontal scale, is immediate. Both
Froude and Rossby numbers are ratios of the horizontal velocity scale by a product of
frequency and length scale; for stratified fluids, the relevant frequency and length are
naturally the stratification frequency and the height scale, whereas in rotating fluids they
are, respectively, the rotation rate and the horizontal length scale.

The analogy can be pursued a little further. Just as the Froude number is a measure
of the vertical velocity in a stratified fluid [via (9-14)], the Rossby number can be
shown to be a measure of the vertical velocity in a rotating fluid. We saw (Section 4-2)
that strongly rotating fluids (Ro nominally zero) allow no convergence of vertical
velocity, even in the presence of topography. This results from the absence of horizontal
divergence in geostrophic flows (ruling out here, for the sake of the analogy, an eventual
beta effect). In reality, the Rossby number cannot be nil, and the flow cannot be purely
geostrophic. The nonlinear terms, of relative importance measured by Ro, yield correc-
tive terms to the geostrophic velocities of the same relative importance. Thus, the
horizontal divergence, Ou/0x + Quv/dy, is not zero but is on the order of RoU/L. Since
the divergence is matched by the vertical divergence, — 0w/ 0z, on the order of W/H,
we conclude that

WIH _

oL (5-18)

in rotating fluids. Contrasting (9-14) to (9-18), we note that, with regard to vertical
velocities, the square of the Froude number is the analogue of the Rossby number.

In continuation of the analogy, it is tempting to seek the stratified analogue of the
Taylor column in rotating fluids. Recall that Taylor columns occur in rapidly rotating
fluids (Ro = U/QQL « 1). Let us then ask what happens when a fluid is very stratified
(Fr = U/NH « 1). By virtue of (9-15), the vertical displacements are severely restrict-
ed (Az « H), implying that an obstacle causes the fluid at that level to be deflected
almost purely horizontally. (In the absence of rotation, there is no tendency toward
vertical rigidity, and parcels at levels above the obstacle can flow straight ahead without
much disruption.) If the obstacle occupies the entire width of the domain, such a
horizontal detour is not allowed, and the fluid at the level of the obstacle is blocked on
both the upstream and downstream sides. This horizontal blocking in stratified fluids is
the analogue of the vertical Taylor columns in rotating fluids. Further analogies between
homogeneous rotating fluids and stratified nonrotating fluids have been reviewed by
Veronis (1967).
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9-5 COMBINATION OF ROTATION AND STRATIFICATION

In the light of the previous remarks, we are now in position to ask what would happen
when, as in actual geophysical fluids, the effects of rotation and stratification are
simultaneously present. The preceding analysis remains unchanged, except that we now
invoke the geostrophic balance in the horizontal momentum equation to obtain the
horizontal velocity scale:

P
Pol
The ratio of the vertical to horizontal convergence then becomes

WiH U* QL Fr?
—_———=e,———— ——— = —_— 9-
U/L N*H®* U Ro (5-19)

QU =

As a result, the influence of rotation (Ro < 1) is to increase the scale for the
vertical velocity. However, since a vertical divergence cannot exist without horizontal
convergence (W/H < U/L), the following inequality must hold:

Fr* S Ro, (9-20)
that is,
U NH
—_— -
NH ~ QL (-21)

This sets an upper bound for the magnitude of the flow field in a fluid under given
rotation (£2) and of given stratification () in a domain of given dimensions (L, H).
If the velocity is imposed externally (e.g., by an upstream condition), the inequality
specifies either the horizontal or the vertical length scales of the possible disturbances.
Finally, if the system is such that all quantities are externally imposed and that they do
not meet (9-21), then special effects such as Taylor columns or blocking must occur.

Inequality (9-21) brings a new dimensionless number NH/Q L, namely, the ratio
of the Rossby and Froude numbers. For historical reasons and also because it is more
convenient in some dimensional analyses, the square of this quantity is usually defined:

NH \? Ro \?

It bears the name of Burger number, in honor of Alewyn P. Burger, who contributed
to our understanding of geostrophic scales of motions (Burger, 1958). In practice, the
Burger number is a useful measure of stratification.

In typical geophysical fluids, the height scale is much less than the horizontal
length scale (H « L), but there is also a disparity between the two frequencies € and
N. Whereas €, the rotation rate of the earth, corresponds to a period of 24 h, the
stratification frequency generally corresponds to much shorter periods, on the order of
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a few to tens of minutes in both the ocean and atmosphere. This implies that generally
Q « N and opens the possibility of a Burger number on the order of unity.

This is a particular case of great importance. According to our foregoing scaling
analysis, the ratio of vertical convergence to horizontal divergence, (W/H)/(U/L), is
given by Fr?, Ro, or Fr*/Ro, depending on whether vertical motions are controlled by
stratification or rotation or both (Figure 9-3). Thus, if Fr?/Ro is less than Ro, stratifi-
cation restricts vertical motions more than rotation and is the dominant process. The

Flow influenced

mostly by
rotation
r T | Three-dimensional
- flow
?
[}
0
WH _ o WH 1
UL UL
14 Fr~ 1
Q\O
Y,
0 \ .

0 / 1 Ro
Figure 9-3 Recapitulation of the various

WH _Fr? WH _ g scalings of the ratio of vertical convergence
UL Ro ue (divergence) to horizontal divergence

Flow influenced  Flow influenced (convergence), (W/H)/(U/L), as a function
by both rotation  mostly by of the Rossby and Froude numbers,

and stratification  stratification Ro = U/QL and Fr = U/NH.

converse is true if Fr?/Ro is greater than Ro. This relationship implies that stratification -
and rotation influence the flow field to similar degrees if Fr’/Ro and Ro are on the

same order. Such is the case when the Froude number equals the Rossby number and,

consequently, the Burger number is unity. The horizontal length scale then assumes a

special value:

NH
L= 9 (9-23)

For the values of Q and N just cited and a depth scale / of 100 m in the ocean and 1
km in the atmosphere, this horizontal length scale is on the order of 50 km and 500 km
in the ocean and atmosphere, respectively. At this length scale, stratification and rotation

go hand in hand. Later on (Chapter 12), it will be shown that the scale defined above
is none other than the so-called internal radius of deformation.



134 Chap. 9 Stratification

PROBLEMS

9-1. The Gulf Stream waters are characterized by surface temperatures around 22°C. At a depth
of 800 m below the Gulf Stream, temperature is only 10°C. Using the value 2.1 x 10~*
K! for the coefficient of thermal expansion, calculate the stratification frequency. What is
the horizontal length at which both rotation and stratification play comparable roles? Com-
pare this length scale to the width of the Gulf Stream.

9-2. An atmospheric inversion occurs when the temperature increases with altitude, in contrast
to the normal situation when the temperature decays with height. This corresponds to a very
stable stratification and, hence, to a lack of ventilation (smog, etc.). What is the stratification
frequency when the inversion sets in (d7/dz = 0)? Take T'=290 K and C, = 1005
m?/s? - K.

9-3. A meteorological balloon rises through the lower atmosphere, simultaneously measuring
temperature and pressure. The reading, transmitted to the ground station where the tempera-
ture and pressure are, respectively, 17°C and 1028 millibars, reveals a gradient AT/Ap of
6°C per 100 millibars. Estimate the stratification frequency. If the atmosphere were neutral,
what would the reading be?

94. A wind blowing at a speed of 10 m/s encounters an extinct volcano (of approximately
conical shape) 500 m high and 20 km in diameter. The air stratification provides a
stratification frequency on the order of 0.02 s'. How do vertical displacements compare to
the height of the volcano? What does this imply about the importance of the stratification?
Is the Coriolis force important in this case?

9-5. Redo Problem 9-3 with the same wind speed and stratification but with a mountain range
1000 m high and 500 km wide.

SUGGESTED LABORATORY DEMONSTRATION

Equipment

A glass or plexiglass container of arbitrary shape, cranberry juice (or other colored drink
with corn syrup or sugar), carbonated water, orange juice (or liquid of intermediate
density and different color).

Experiment

Fill the container halfway with cranberry juice. Continue filling, delicately, with car-
bonated water. To avoid mixing and to create a stratification, pour the water slowly
along the sides or through a floating dish with bottom perforations (e.g., an egg carton
with holes made at the bottom). Let the liquid sit for a few minutes to allow damping
of motions and to permit some diffusion across the fluid interface. Slowly pour (using
the same caution and technique) the orange juice and observe the spreading at an
intermediate depth, paying particular attention to unsteady motions.



David Brunt

-------------------

1886 — 1965

As a bright young British mathematician, David Brunt began a career in astronomy,
analyzing the statistics of celestial variables. Then, turning to meteorology during World
War I, he became fascinated with weather forecasting and started to apply his statistical
methods to atmospheric observations in the search for primary periodicities. By 1925,
he had concluded that weather forecasting by extrapolation of cyclical behavior was not
possible and turned his attention to the dynamic approach. In 1926 he delivered a lecture
at the Royal Meteorological Society on the vertical oscillations of particles in a stratified
atmosphere. L. F. Richardson then pointed to a paper published the preceding year by
Finnish scientist V. Viisild, where the same oscillatory frequency was derived. This
quantity is now jointly known as the Brunt-Viisild frequency. Continuing his efforts
to explain observed phenomena by physical processes, Brunt contributed significantly
to the theories of cyclones and anticyclones and of heat transfer in the atmosphere. His
studies culminated in a textbook titled Physical and Dynamical Meteorology (1934) and
confirmed him as a founder of modern meteorology. (Photo credit: LaFayette, London.)
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