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ABSTRACT

This dissertation focuses on ocean currents, geostrophic volume and freshwa-
ter fluxes, hydrography, and salinity fields in Nares Strait, one of the major straits in
the Canadian Arctic Archipelago (CAA) to the NW of Greenland. Nares Strait con-
nects the Arctic to the North Atlantic Ocean, facilitating an exchange of freshwater
between both oceans. The freshwater budget of the Arctic Ocean plays an important
role in the global climate system. Observations of freshwater flux through the CAA
have been sparse, seasonally biased, and on short time scales in the past. Between
2003 and 2006 oceanographic instruments deployed near 80.5°N measured conduc-
tivity, temperature, pressure, and velocity at high temporal and spatial resolution
across the 38 km wide and 400 m deep Nares Strait.

The focus of my research is on the analysis of the novel CT data set in
combination with local wind, along-channel pressure gradients, and ADCP data.
Two different methodologies were developed to evaluate data from the innovative
CT moorings that avoid ice and continuously sample the water column due to the
mooring motion at tidal time scales. Nares Strait is ice-covered throughout the year
with ice drifting in late summer, fall, and early winter, and ice being land-fast the
remainder of the year.

Geostrophic volume and freshwater fluxes vary between the two ice states
showing more variability during mobile ice conditions. Geostrophic freshwater flux

(three-year mean of 20 & 3 mSv, Sv = 10% m?3 s7!

, no trend observed) is modulated
by the ice cover and reveals 30% higher fluxes during mobile ice conditions than

during land-fast ice conditions. A 25% increase occurs when extrapolating to the
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surface to account for freshwater in the unsampled surface layer. Enhanced fresh-
water fluxes during mobile ice conditions can have implications in the future when
ice conditions change towards a more ice-free state due to no ice bridge forming in
Smith Sound. The geostrophic volume flux (three-year mean of 0.47 + 0.05 Sv)
increases over the three-year period by 15 + 4%. The limited domain for fluxes is
58% of the total area above 200 m, including a level of known motion at 200 m.

Forcing of the geostrophic freshwater flux through Nares Strait is a combi-
nation between local wind and along-channel pressure gradient forcing during mo-
bile ice conditions. During land-fast ice conditions only the along-channel pressure
gradient is forcing the geostrophic freshwater flux due to the decoupling from the
atmosphere through the ice cover.

The three-year mean geostrophic velocity has a surface-intensified southward
flow against the western side of the strait and a secondary core flowing southward in
the middle of the strait. Distinguishing between the two different ice states, I find
the surface-intensified core of up to 0.28 m s~! in the middle of the strait during

1 exists on the western

mobile ice conditions. A sub-surface core of about 0.25 m s~
side of the strait during land-fast ice conditions, intensifying over the three-year
study period.

When comparing geostrophic velocity to ADCP velocity a large discrepancy
exists during all seasons within five km of the western coast. This discrepancy I
associate with the lateral boundary layer; the CT measurements are close enough to
the coast to be within the horizontal boundary layer. Geostrophic velocity resembles
free-slip conditions; ADCP velocity resembles no-slip conditions. In the eastern part
of the strait velocities compare well.

Different water masses occupy the strait with fresh, cold water in the top

layers on the western side and warm, salty water of Atlantic origin at depth on the

eastern side of the strait. Salinity variations of about two psu in time and space
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reflect a variable freshwater outflow from the Arctic Ocean. One particularly strong
pulse occurred at the end of July 2005. For several days, steeply sloping isohalines
indicated strong geostrophic flow down the middle of the strait coinciding with an

amplified ice export from the Arctic due to strong southward winds.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

The Arctic Ocean freshwater budget influences the global climate system. Im-
portant parts of the freshwater budget are the Pacific Water inflow through Bering
Strait, Atlantic Water inflow through the Barents Sea and Fram Strait, continental
river runoff, precipitation—evaporation (P—E), and outflow of liquid water and ice
through deep Fram Strait and the shallow straits of the CAA towards the North
Atlantic (Aagaard and Carmack, 1989). Geographic locations of the different com-
ponents can be seen in Fig. 1.1. A simple ocean-sea-ice model suggests that the
ocean transport of freshwater through Fram Strait is about 60% of that through the
CAA (Steele et al., 1996) but contributions from ice are small in the CAA due to
the presence of land-fast ice (Prinsenberg and Bennett, 1989; Melling et al., 2008).
Freshwater storage especially in the Beaufort Gyre means that the budget does not
have to balance at any given time, rather pulses of freshwater release can occur
during specific climate regimes (Proshutinsky et al., 2009). When freshwater is re-
leased from the Arctic Ocean towards the North Atlantic it can influence deepwater
formation in the Labrador and Greenland Seas and therefore the Meridional Over-
turning Circulation (Lazier, 1980; Hakkinen, 1993; Hakkinen, 1999; Rennermalm et
al., 2006; Stouffer et al., 2006; Wu et al., 2008).

Significant changes have recently been observed in the Arctic region including

changes in sea ice drift pattern and upper ocean circulation (Polyakov and Johnson,



2000; Rigor et al., 2002), changes in Arctic sea ice cover (Fig. 1.2, Lindsay and Zhang,
2005; Stroeve et al., 2005; Lindsay et al., 2009), a strengthening and warming of
the Atlantic inflow through Fram Strait (Holliday et al., 2008), an increased run-
off into the Eurasian sector (Peterson et al., 2002), and increased sea-ice outflow
through Nares Strait (Kwok et al., 2010). All these changes can have an influence
on the freshwater budget and its consequences; most changes appear to correlate
with atmospheric forcing (Serreze and Francis, 2006). Salinity also shows temporal
and spatial variability over a wide range of scales in the CAA and adjacent oceans.

Obtaining reliable volume and freshwater flux estimates and describing the
hydrography in Nares Strait as part of the CAA is particularly important; longer-
term measurements did not exist in Nares Strait—one of the main channels in the
CAA. Flux estimates may be used to monitor change, and to constrain the models
used to make climate predictions. Note, however, that few of the current generation
of climate models allow any flow of water through the channels of the CAA, with
unknown consequences for projections. The CAA poses several challenges such as
an ice-cover during up to nine months out of the year, closeness to the magnetic
North Pole, and remote location (Melling, 2000). Unpredictable ice conditions in
the short summer season have resulted in only limited expeditions to this area in
the past.

This study focuses on Nares Strait, the north-eastern most strait in the CAA
to the NW of Greenland. Sadler (1976) deployed current meters for 40 days, Bourke
et al. (1989) investigated temperature and salinity during one summer season, and
Miinchow et al. (2006) evaluated data from two-day ADCP surveys in Nares Strait.
Nares Strait facilitates a total southward volume flux estimated to be 0.57 £ 0.09
Sv (Miinchow and Melling, 2008), 0.7 Sv (Sadler, 1976), and 0.8 & 0.3 Sv (Miinchow
et al., 2006). This compares to a net yearly southward volume transport in Fram

Strait of 2 £ 2 to 4 + 2 Sv (Schauer et al., 2004). Both straits are comparable for



freshwater flux with Fram Strait exporting more freshwater in solid form and Nares
Strait exporting more freshwater in liquid form.

Between 2003 and 2006 moorings were deployed in Nares Strait to investi-
gate variability from tidal to interannual time scales for the first time. Miinchow
and Melling (2008) published first results of vertically averaged current variability
while Samelson and Barbour (2008) discussed results from the atmospheric modeling
component.

Ice conditions in Nares Strait change between two states.  Between
June/August and November/March multi-year ice is drifting through the strait while
during the remainder of the year ice is land-fast. An ice bridge forms in Smith Sound
anytime between November and March blocking ice advection (Dunbar, 1973; Bar-
ber et al., 2001; Kwok, 2005; Dumont et al., 2009; Kwok et al., 2010). Ice bridges
are anchored to the coasts of both Greenland and Canada and tidal currents as well
as local winds impact their formation (Samelson et al., 2006; Dumont et al., 2009).
An ice index, defined by Miinchow and Melling (2008), distinguishes between the
two ice states in Nares Strait.

The conductivity, temperature, and pressure data set collected during the
project is evaluated here with regard to hydrography and salinity variability. It is
also essential to obtain reliable flux estimates and to describe the time dependence
of flows through Nares Strait, which is addressed in this dissertation as well. Fluxes
through Nares Strait also reflect impacts of diminishing sea ice in the Arctic (Parkin-
son and Cavalieri, 2008), disintegrating ice shelves in northern Canada (Copland et
al., 2007), and potentially surging glaciers and ice loss from the ice sheet in north-
ern Greenland (Rignot and Steffen, 2008; Khan et al., 2010), especially influencing
freshwater content. We need to know conditions in the different pathways, what
the forcing mechanisms of the flow through the straits are in order to establish a

baseline first. This work is part of the Canadian Archipelago Throughflow (CAT)



Study as part of the larger Arctic Sub-Arctic Ocean Fluxes (ASOF) program.

1.2 Research Questions

Research questions for Nares Strait arise with respect to oceanographic con-
ditions on different spatial and temporal scales, forcing mechanisms, and future
implications of findings. This dissertation investigates the following questions for

the 2003-06 time period:

e How successful was the novel mooring design for CT instruments with less
buoyancy in the top layers? What is the best way to analyze this data set
and which methodology proofs successful? Is this a reliable design to measure
properties closer to the surface (within 30 m) and within an area of large

iceberg threat?

e What are the hydrographic conditions in Nares Strait and how do they change

over time?

e What are the characteristics of the geostrophic flow and how is the geostrophic

flow changing over the three years?

e How are the geostrophic volume and freshwater fluxes through Nares Strait
characterized? What is their mean, their variability, how do they change over

time (with ice seasons, years, etc.)?
e What are the forcing mechanisms of the geostrophic fluxes through the strait?

e [s the flow through Nares Strait in geostrophic balance? What is the result of

a direct comparison between geostrophic and ADCP velocity?

Time series analysis and statistical methods were used in this dissertation to

answer the above questions. Note that this list of questions is not inclusive. The



three-year data set includes other instrumentation that is not covered here that lead
to more research questions to be answered in the future. More research questions
resulting from the answers found in this dissertation are placed at the end of the

dissertation in the future work section 5.2.

1.3 Dissertation Overview

This dissertation focuses on an innovative three-year mooring data set of tem-
perature, conductivity, and pressure records in Nares Strait. Two different method-
ologies were used to evaluate the novel CT data set that avoids iceberg encounter
and bends under the influence of tides, strong currents, and icebergs. The year-
round presence of ice and icebergs poses a constant threat to all moored equipment
deployed in these waters. These challenges require both unique mooring design and
data processing. Therefore, we discuss our mooring design, non-standard methods,
and calibration in detail in the data and appendices sections of chapters 2 and 3
before describing oceanographic research results.

First, I describe the three-year mean hydrography, the variability seen in
the salinity field, and water masses from these moored records and compare them
with snapshots of more traditional survey data. Salinity variability in space and
time, and a large Arctic freshwater incursion event in July 2005 are described. A
dependence on the ice cover is revealed using statistical analysis.

Next, an analysis of geostrophic currents and fluxes along with a more time-
dependent analysis follows. Variability in salinity and geostrophic velocity on dif-
ferent time scales are quantified. Geostrophic volume and freshwater fluxes are
presented. Different forcing mechanisms—Ilocal wind and along-channel pressure
gradient forcing—are discussed next.

Chapter 4 demonstrates a comparison between geostrophic and ADCP ve-
locities. The comparison during different ice states reveals a discrepancy during all

ice conditions close to the Ellesmere Island side, which is analyzed in detail.



The dissertation then concludes and gives a future outlook. This includes
science questions and possibilities related to the extended data set from 2007-09
and 2009-11, described in more detail.

Chapter 2 is in press at the Journal of Geophysical Research-Oceans, (Rabe,
B., A. Miinchow, H. Johnson and H. Melling, 2010: Nares Strait Hydrography and
Salinity Field From a Three-Year Moored Array. J. Geophys. Res., doi:10.1029
/2009JC005966, in press). Chapter 3 is a journal article forthcoming (Rabe, B.,
H. Johnson, A. Miinchow and H. Melling, 2010: Geostrophic Ocean Currents and
Freshwater Fluxes Across the Canadian Polar Shelf via Nares Strait). The word

“we” in both chapters refers of all authors.
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Figure 1.1: Map of the Arctic Ocean including locations of components of freshwa-
ter budget: Pacific Water inflow through Bering Strait, Atlantic Water
inflow through Barents Sea and Fram Strait, continental river runoff
off Siberia and CAA, precipitation—evaporations (P—E) throughout
the Arctic, and outflow of liquid water and ice through Fram Strait
and straits in the CAA.



Figure 1.2: Arctic sea ice extend minimum in 1979 (top) and 2005 (bottom) show-
ing the large decline in sea ice extent observed from satellites. This is
just one example of the recent changing conditions in the Arctic re-

gion (http://www.nasa.gov /centers /goddard /news /topstory /2005
Jarcticice_decline_prt.htm)



Chapter 2

NARES STRAIT HYDROGRAPHY AND SALINITY
FIELD FROM A THREE-YEAR MOORED ARRAY

2.1 Abstract

Nares Strait to the west of Greenland facilitates the exchange of heat and
freshwater between the Arctic and Atlantic Oceans. This study focuses on salinity,
temperature, and density measurements from Nares Strait from a mooring array
deployed from 2003-2006. Innovative moorings requiring novel analysis methods
measured seawater properties near 80.5°N, at spacing sufficient to resolve the in-
ternal Rossby deformation radius. The three-year mean geostrophic velocity has

1 against the western side of the

a surface-intensified southward flow of 0.20 m s~
strait and a secondary core flowing southward at 0.14 m s~! in the middle of the
strait. Data shows warm salty water on the Greenland side and cold fresher water
on the Ellesmere Island side, especially in the top layers. There was a clear differ-
ence in hydrographic structure between times when sea ice was drifting and when it
was land-fast. Ice was drifting in late summer, fall, and early winter with a strong
surface-intensified geostrophic flow in the middle of the strait. Ice was land-fast in
late winter, spring, and early summer, when there was a sub-surface core of strong
geostrophic flow adjacent to the western side of the strait. Salinity variations of
about two psu in time and space reflect a variable freshwater outflow from the Arc-

tic Ocean. One particularly strong pulse occurred at the end of July 2005. For

several days, steeply sloping isohalines indicated strong geostrophic flow down the



middle of the strait coinciding with an amplified ice export from the Arctic due to

strong southward winds.

2.2 Introduction

The heat and freshwater budgets of the Arctic Ocean play an important role
in the global climate system. Freshwater fluxes towards the North Atlantic occur
through the shallow straits of the Canadian Arctic Archipelago (hereafter CAA)
and deep Fram Strait (Aagaard and Carmack, 1989). A simple ocean-sea-ice model
suggests that the ocean transport of freshwater through Fram Strait is about 60%
of that through the CAA (Steele et al., 1996) but contributions from ice are small
in the CAA due to the presence of land-fast ice (Prinsenberg and Bennett, 1989;
Melling et al., 2008). These freshwater fluxes into the Labrador and Greenland Seas
are a source of buoyancy that stratifies the water column and, if it reaches deep
convection regions, reduces deep convection.

Atlantic water flows into the Arctic Ocean through Fram Strait and Barents
Sea (Fahrbach et al., 2001; Schauer et al., 2002) while Pacific Water enters through
Bering Strait (Coachman and Aagaard, 1966; Woodgate and Aagaard, 2005). As-
semblies of these water masses are augmented by run-off from the Eurasian and
American continents and return to the Atlantic via Fram Strait and the CAA. Wa-
ters are modified in transit, but their origins remain clear.

Salinity shows temporal and spatial variability over a wide range of scales in
the CAA and adjacent oceans. For example, the “Great Salinity Anomaly” was a
freshwater anomaly that traveled throughout the North Atlantic between 1968 and
1982. It originated from Fram Strait, traveled southward in the East Greenland
Current and freshened the central Labrador Sea (Dickson et al., 1988). Numerical
models such as Goosse et al. (1997), Tang et al. (1999), and Wadley and Bigg (2002)

simulate the connection between changes in freshwater fluxes (for example caused
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by the “Great Salinity Anomaly”) and convection, but these spatially coarse resolu-
tion models do not represent the coastal and rim-current systems in the Greenland
and Labrador Seas (Sutherland and Pickart, 2008). Koenigk et al. (2007) use 20th
century and Intergovernmental Panel on Climate Change scenario runs for an inves-
tigation of the changing freshwater export out of the Arctic Ocean using a model
with grid spacing of about 15 km around Greenland. They suggest an increase in
the liquid freshwater outflow through the whole CAA from about 60 mSv (Sv =
10° m? s7!) to more than 100 mSv by 2100 without distinguishing between different
straits in the CAA. Obtaining reliable volume and freshwater flux estimates and
describing the hydrography in Nares Strait as part of the CAA is particularly im-
portant; longer-term measurements did not exist in Nares Strait—one of the main
channels in the CAA—as they do for example in Lancaster Sound (Prinsenberg and
Hamilton, 2005). Flux estimates may be used to monitor change, and to constrain
the models used to make climate predictions. Note, however, that few of the current
generation of climate models allow any flow of water through the channels of the
CAA, with unknown consequences for projections.

Nares Strait to the west of Greenland facilitates a total southward volume
flux estimated to be 0.57 £+ 0.09 Sv (Miinchow and Melling, 2008), 0.7 Sv (Sadler,
1976), and 0.8 £ 0.3 Sv (Miinchow et al., 2006). This compares to a net yearly
southward transport in Fram Strait of 2 + 2 to 4 £ 2 Sv (Schauer et al., 2004).
The net southward Atlantic Water flux in Nares Strait is about 0.59 £ 0.13 Sv
and the net southward Pacific Water flux is about 0.32 £ 0.04 Sv (Miinchow et al.,
2007). Ice flux through Nares Strait is small as ice is land-fast during most of the
year. Unpredictable ice conditions in the short summer season have resulted in only
limited expeditions to this area in the past.

First studies in Nares Strait include Sadler (1976) who interpreted data from

a 40-day long data set of current measurements, and Bourke et al. (1989) who
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evaluated temperature and salinity during one summer season. Miinchow et al.
(2006) used data from a synoptic two-day ADCP survey to evaluate fluxes. The
first longer-term measurements were conducted as part of the Canadian Archipelago
Throughflow Study from 2003 to 2006. This project resulted in three-year data sets
from ADCP moorings with first results regarding interannual to tidal variability
and forcing published by Miinchow and Melling (2008). The conductivity, tem-
perature, and pressure data set collected during the project is evaluated here with
regard to hydrography and salinity variability. Also included in the project was an
atmospheric modeling component (Samelson and Barbour, 2008).

The width of a baroclinic flow in geostrophic balance scales with the internal

Rossby deformation radius:

( g/ Do) 1/2
f
with ¢’ :% the reduced gravity, pg the mean density, Ap the density differ-

Lp= (2.1)

ence, g the gravitational constant, f the Coriolis parameter, and D, the vertical scale
of motion. This is the fundamental spatial scale of motion in the CAA (Leblond,
1980), and is about 10 km for Nares Strait Miinchow et al., 2006), significantly less
than the width of the strait.

This study introduces the novel three-year data set of temperature, conduc-
tivity, and pressure records (section 2.3) from the moored array in Nares Strait, that
resolves the density and thus geostrophic velocity field at the scale of the internal
Rossby deformation radius. The year-round presence of ice and icebergs poses a
constant threat to all moored equipment deployed in these waters. These challenges
require both unique mooring design and data processing. Therefore, we discuss our
non-standard methods in detail in section 2.4 and Appendix A (2.10.1). Section
2.5 then describes the three-year mean hydrography and water masses from these

moored records and compares them with snapshots of more traditional survey data.
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Salinity variability in space and time, and a large Arctic freshwater incursion event,
are described in sections 2.6 and 2.7, respectively. The results from this study are
discussed in section 2.8, and section 2.9 contains concluding remarks. This paper
focuses on characterizing the three-year mean and the variability seen in the salinity
field; a second paper in preparation (“Geostrophic ocean currents and freshwater
fluxes through Nares Strait, West of Greenland” by Rabe et al.) will explore in

more detail the physics governing variability in the flow.

2.3 Study Area and Data Sources

The Canadian Archipelago lies on the Canadian polar shelf, amid a network of
straits and basins that provide pathways for flow between the Arctic Ocean and the
North Atlantic. This study focuses on Nares Strait in the northeast CAA between
Ellesmere Island and Greenland. The channel is less than 400 m deep and 38 km
wide and comprises, from north to south, Robeson Channel, Hall Basin, Kennedy
Channel, Kane Basin and Smith Sound (Fig. 2.1a). Conductivit