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ABSTRACT 

The propagation of tides from the coastal ocean into shaHow estuarine waters often produces 
characteristic nonlinearly induced asymmetries of velocity and water level in time series. Until 
recently (Aubrey and Speer, 1985) a sound physical understanding of related phenomena 
has been difficult to obtain as flow field daia are rare. Numerical studies usually model a 
single estuary only; the modeled parameter space is often limited. From the vertically averaged 
governing equations that include nonlinear terms and bottom friction, we deduce that three 
dimensionless parameters set the character of the barotropic tidal response for channel shaped 
estuaries. We then develop a time-dependent numerical model based on the method of Lax and 
WendrofT. We use the model to explore the response over a wide range of the three parameters. 
Tidal responses include damped waves, hydraulic regimes, and tidal wave breaking or bore 
development. Where field data are available in the case of the Conwy Estuary, UK, water level 
and velocity compare favorably with model prediction. 

1.	 Introduction pretation of highly nonlinear and frictionally 
dominated tidal flows. Traditionally, tides are con­

The propagation of tides from the coastal ocean ceived as long waves with energy propagating both 
into shallow estuarine waters often produces into and out of a forced basin. In order to explain 
characteristic nonlinearily induced asymmetries of large phase lags in low water in the St. Lawrence 
velocity and water level. Hansen (1956) first gave Estuary, Canada, LeBlond (1978), instead, pos­
numerical solutions of nonlinear tidal propagation tulated that friction dissipates the tidal energy 
for the Ems Estuary, Germany. Kreiss (1957) completely during flood. In this concept, the tidal 
studied the ebb-flood asymmetry of the tidal flow energy propagates only landward, similar to the 
field analytically with perturbation methods. He conduction of heat away from a source. 
attributed the distortion of the tidal wave to In Section 2 of this paper, we formulate a 
quadratic friction acting in concert with nonlinear barotropic (vertically averaged) model based on 
advection, Breaking of the tidal wave has been the governing equations of momentum and mass 
observed in several estuaries: the Severn and Trent continuity. Using scaling analysis we find that 
in England (Cornish, 1934 and Rowbotham, three dimensionless parameters set the character of 
1983), the Hugli in India (Masumder et aI., 1984), the tidal response. In Section 3, we introduce a 
the Tsien Tang in China (Cornish, 1934), and in numerical scheme to solve these equations for 
the Shubenacadie in Canada, Abbott (1956) variable channels. We utilize work of Houghton 
investigated wave breaking analytically and and Kasahara (1968) and O'Donnell and Garvine 
deduced that nonlinear advection was the main (1983) who applied the numerical one-step scheme 
cause of bore development. Prandle (1985) studied of Lax and WendrolT (1960) to highly nonlinear 
the dynamical elTects of exponentially varying . but inviscid problems simulating air flow over 
channel geometries with a linear tidal model. All ridges and buoyant plumes, respectively. In Sec­
these early studies employed specific, highly tion 4 we present water level and velocity data 
simplified estuarine dynamics in order to address from the Conwy Estuary, UK, and compare them 
particular physical processes. with our model predictions. The Conwy Estuary 

LeBlond (1978) introduced a new physical inter- serves as a particular example of strongly non-
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linear tidal dynamics. In Section 5 we explore the 
parameter space of barotropic tides in shallow 
estuaries. This section is a generalization of the 
work of LeBlond (1978) and Speer and Aubrey 
(1985). Section 6 concludes the paper. 

2. Tidal model formulation 

We assume estuaries that are channel-shaped 
and narrow enough to ignore Coriolis force, i.e., 
the barotropic Rossby radius of deformation is 
much larger than the width of the estuary. We also 
neglect transverse flow components. The mathe­
matical representations of cross-sectional averaged 
tidal dynamics for an incompressible fluid are: 

(1 ) 

0'1* oA*u* 
* (2)b*~+-o=0.

Of x 

Here asteriks denote dimensional variables; 
u*(x*, f*) and '1:(x*, f*) are the dependent 
variables, axial velocity and water level, respec­
tively; (x*, f*) are axial distance from the mouth 
and time; b* represents width; p*(x*, f*) is the 
wetted perimeter; and A*(x*, f*) is the wet cross­
sectional area. Bottom and side wall stresses.: are 
represented as 

.: = CDP*u* lu*l, (3) 

where P* is the reference density and CD a 
frictional drag coefficient. We neglect frictional 
stresses at the free surface. 

To incorporate the nonlinear effects which arise 
from substantial changes of A* with time, we 
model the cross-sections as shown in Fig. 1. 
Motivated by observed shapes of cross-sections in 
natural channels, we assume a trapezoidal cross­
section above a shallow, rectangular ebb channel 
of depth ht, always filled with water. The top of 
the ebb channel constitutes a reference for the tidal 
water level elevations which, then, is always 
positive. In constant depth channels '1* = 0 is an 
absolute reference, but in Section 4 we model an 
estuary with an axially sloping river bed and 
'1* = 0, then, is no longer an absolute reference 
level. Thus, the vertical distance from the top of the 
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ebb channel to an absolute datum constitutes 
another geometric input function, c*(x*) with 
'1: = '1* + c*. However, the variable estuarine 
width is 

b*(x*, '1*(x*, f*)) 

= bt(x*) + a*(x*) '1*(x*, f*), (4 ) 

where bt and a* = bbNb'1t + bb!lb'1i are known 
geometric input functions representing axial width 
variation and the constant slopes of the side walls, 
respectively. Thus, the model includes the effects of 
variable width and cross-sectional area. 

Since the structure of the governing equations is 
second order in x* or f*, two boundary conditions 
must be applied. Here, specification of the 
freshwater flow at the head and water level at the 
mouth of the estuary as functions of time suffice. 

Next, we scale the equations by introducing the 
dimensionless variables 

f=f*/T, p=p*/B, b=b*/B, 

A=A*/HB, '1*='1/'10' '1:='1./'10' 

bo=bt/B, ho=ht/H, a=a*'1o/B, 

where T, B, H, and '10 are tidal period, mean width, 
mean depth, and water level amplitude at the 
estuarine mouth, respectively. These scales are 
known a priori for any particular estuary and are 
independent of the particular dynamics. In con­
trast, the scales U, for velocity, and L, for length, 
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c' 
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the Lax-WendrofT model. Low water never falls below 
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depend on the dynamics and are used to define 
scaled variables as follows: 

u=u*IU, x=x*lL. 

U and L depend on the tidal response of the 
estuary and will be found later in terms of the inde­
pendent scales T, H, '10' and the drag coefficient 

CD' 
The scaled continuity equation is now: 

eLbl(UT) a/'1 + aAAu) =0, (5) 

where e = 'loiN. In order to simplify the notation 
we represent partial derivatives by subscripts. A 
necessary condition for a balance in (5) requires 
that both terms are of order one, i.e., U =eLIT. 
Then the scaled momentum equation is 

2(LILj a/u + ~e(LIL)Y axu 

+ ax'1 + (LILr)3 u lui piA = 0, (6) 

where Lr=[gH 2T 2/(eC D )]1/3 and L). = J'iiiT 
are the frictional length scale introduced by 
LeBlond (1978) and the tidal wavelength, respec­
tively. The effective length scale, L, for a particular 
dynamic regime may be anyone of three 
candidates: 

(a) L g , the geometric length scale related to 
estuarine bathymetry, for example, the distance 
from the mouth to the head of the estuary; this 
scale does not appear explicitly in eq. (6), but 
enters through the boundary condition at the 
head; 

(b) LA' the tidal wavelength; 
(c) L r, the frictional length scale. 

In all following computations of velocity and 
water level we used L=min(Lr, LA' L g ). 

Three independent dimensionless parameters 
(e, ¢>, y) can now be defined from the above 
scalings: 

(7)e= '1oIH, 

The parameter e depends only on known scales 
and indicates the importance of the nonlinearities 
because it appears in the advective and frictional 
terms. The two length scale ratios, ¢> and y, charac­
terize the response of the estuary, since their 
magnitudes select the term which balances the sur­
face pressure gradient in eq. (6). We thus find that 

the barotropic tidal response of shallow estuaries 
depends upon three dimensionless parameters. In 
Section 5 we explore the model tidal response 
within the space defined by these three parameters. 

3. Solution technique 

The scheme of Lax and Wendroff (1960) solves 
the governing equations numerically. It requires 
equations written in conservation law form, such 
as 

(8) 

where P, Q, and R are vectors such that Q = Q(P) 
and R = R(P). The dimensionless momentum 
and continuity equations above transform into 
this form when (('1) = bo'1 + ~a'12 is used as a 
dependent variable representing wetted cross­
sectional area above the top of the ebb channel 
(Fig. 1). The form of eq. (8) is then obtained from 
eqs. (5) and (6) with 

P= {u, (}, 

Q = {e min(l, ¢>, d u2/2 + '1, Au}, 

R= [min(l, ¢>, y)!¢>]3 {u lui piA, o}, 

where 

A =hobo+e(bo+ ~a'1)'1, 

'1(0 = -bola + (b~/a2 + 2(ja) 1/2. 

The finite difference scheme of Lax and Wen­
droff (1960) emerges from a Taylor series expan­
sion in time of the dependent variable P carried 
through second order in (bt)2, where bt is the time 
step. Expressing the time derivatives by spatial 
derivatives gives 

P(t+bt)= P(t)- (axQ+ R) bt+ {ax[J(axQ+ R)] 

+G[axQ+R]} ~bt2+0(bt3), (9) 

where J and G are the Jacobian matrices: 

(10) 
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G= ap,R i = [min(l, 1/>, y)/I/>] 3 

X {2/UI piA u lui (A-I a,p+ Pa,A- 1 
)} 

00' 

(11 ) 

Eq. (9) can be written in finite difTerence form 
(Houghton and Kasahara, 1968) as: 

P(I + bt) = P(t) - (biQ + R;) bt 

+([J+(bi+ I /2Q+R+) 

- J -(b i _ I /2Q + R - }]/bx 

+ [G(biQ + Ri]} 15/2/2, (12) 

where 

bil/l == ~(I/Ii+l -I/Ii- d bx, 

fJ i+ 1/21/1 == (I/Ii+ 1 -I/Ii)/bx, 

bi_ 1/21/1 == (I/Ii -I/Ii_l)/bx, 

1/1+ == Hl/li+ 1 + I/I;), 

1/1- ==~(l/Ii+l/li-1)' 

and 1/1 represents an operand. 
Lax and WendrofT (1960) showed that a 

necessary condition for the stability of the numeri­
cal scheme is the Courant-Friedrich-Lewy condi­
tion 

Nc == [urn.. + (A/b):,(;x/min(l, 1/>, y)] bt/bx < 1, 

(13) 

where urna• is the magnitude of the maximum par­
ticle velocity, [A/b ):,(;x/min( 1,1/>, y) is the maxi­
mum tidal phase velocity in the modeled domain, 
and Nc is the Courant number. Muenchow (1988) 
verified the numerical scheme against analytical 
solutions of linear tidal and nonlinear, but 
inviscid, bore propagation in constant breadth and 
depth channels. The latter problem models the 
flow evolving after the breaking of a dam (Stoker, 
1947). 

Lax and WendrofT (1960) designed their numeri­
cal scheme so that it conserves mass and momen­
tum across discontinuities. Therefore, the Lax­
WendrofT scheme, as compared with others, 
remains stable even when discontinuities, such as 
bores, arise unexpectedly in the modeled domain. 
It is accurate to order (bt)2, but once a bore has 
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formed, the flow variables behind the bore oscillate 
slightly. The speed of propagation of the bore 
is accurate only within 10 percent, as compared 
with analytically derived propagation speeds 
(Richtmayer and Morton, 1967). Here, we focus 
attention on the distortion of the tidal wave as it 
enters shallow estuaries rather than on the details 
of bores themselves. Thus, the modest errors 
associated with the Lax-WendrofT model when 
bores occur are acceptable. The next section 
illustrates that the Lax-WendrofT model can be 
applied to highly nonlinear tidal dynamics of a real 
estuary which exhibits large variations of estuarine 
width and depth. 

4. Application to the Conwy estuary 

Fig. 2a shows a map of the Conwy Estuary, UK, 
from its mouth at Deganwy to its tidal limit at 
Llanwrst. The estuary has tidal flats, is shallow in 
depth, and has a vertical salinity structure that is 
partially to well mixed. Dramatic changes in 
estuarine width are seen in Fig. 2b depicting two 
typical cross-sections along with mean low and 
high water levels at Conwy. On the tidal time scale, 
the wetted cross-sectional area varies by an order 
of magnitude with time and position along the 
estuary. Wallis and Knight (1984), West and 
Mangat (1986), and Shiono and West (1987) 
studied the velocity field of the Conwy Estuary 
intensely in order to calibrate numerical models, 
determine transport processes, and resolve bottom 
generated turbulence. 

Fig. 3 shows time series of observed water level 
and velocity at two stations obtained by the senior 
author in June 1986. The data were band-pass 
filtered with a Lanczos filter (0.5 and 25 h cut-ofT 
periods). Near the mouth at Conwy the water level 
(Fig. 3a) exhibits a nearly harmonic wave form, 
whereas at Dolgarrog the wave crests are steep and 
sharp (Fig. 3b), i.e., a nonlinearly distorted wave 
results as the tide propagates into the estuary. 
Further nonlinearity appears in the velocity time 
series, as the flood currents last for only 3 to 4 h 
(Figs. 3c, d). Strong asymmetry in the tidal signal 
is clear. 

The objective of this section is to apply the 
model to the Conwy Estuary and, in particular, to 
explain the observed nonlinearities. The only 
adjustable parameter with which to tune the model 
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is the frictional drag coefficient, CD' We varied the 
coefficient to best reproduce the observed tidal 
water level at Dolgarrog and adopted CD = 10- 2

. 

The total model domain extends from Conwy to 
L1anwrst and consists of 35 equally spaced spatial 
grid points. For the Conwy Estuary (H = 3 m), 
then, the length scales defined in the previous 
section are: 

Lg~21km, Lf~ 34 km, L;. ~ 320 km. 

Therefore, the dimensionless parameters are e= 
E J 

OJ> -, 
OJ
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01 

Fig. 3. Time series of water level at (a) Conwy and (b) Dolgarrog (note the increase of nonlinear properties); velocity 
near (c) Section 22 and (d) Section 25. 
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Fig. 2. (a) Map of the Conwy Estuary, UK. The map on 
the left continues at the right. The numbers indicate 
stations for bathymetric data. Locations of the tide 
gauges (. ) are Conwy and Dolgarrog. Positions of Aan­
deraa current meter moorings (.) are near Sections 22 
and 25. The dashed line marks areas which are dry at 
lower water. (b) Two profiles of contrasting cross­
sections (see (a) for the locations). Note the dramatic 
variations of cross-sectional area along the channel and 
with time, i.e., compare wetted areas at times of high and 
low water. 

Yfo/H=0.8, !p=LrlL;.=O.l1, and y=Lg/L;.= 
0.07. Imposed boundary conditions are water level 
at Conwy (Fig. 3) and freshwater velocity at the 
head (L1anwrst). 

The model predicts water level and velocity 
which we compare in Fig. 4 with water level at 
Dolgarrog and velocity data at two sections (see 
Fig. 2 for the locations). The phase of water level 
data at Dolgarrog lags the predicted phase by 
about 0.5 hours (Fig.4a). The model over­
estimates the low water levels, but the water depth 
at this stage of the tidal cycle is extremely shallow 
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Fig. 4. Comparison of model predictions for the Conwy 
Estuary with data for five tidal cycles: (a) Water level at 
Dolgarrog (Section 14), (b) velocity near Section 22, 
(c) velocity near Section 25. The dots indicate the data 
and the solid lines represent model predictions (see 
Fig. 2a for the locations and Fig. 3 for the data). 

( < 0.5 m). Figs. 4b and c compare velocity data 
with predictions. Since the velocity was measured 
at only a single point in the cross-section while the 
model predicts cross-sectional averaged velocities, 
we can only compare the velocity phase quan­
titatively, because the phase varies little with width 
and depth. The model simulates the phase and 
even the amplitude of the velocity data very well. 
The highly distorted, asymmetric waveform 
representing only 3 to 4 h of flood currents is in 
excellent agreement with the data. 

Fig. 5 shows a typical momentum balance at 
two grid points for a single tidal cycle. Close to the 
mouth (Fig. 5a) the acceleration term, D,U, con-
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Fig. 5. Model momentum balance for the Conwy 
Estuary (a) near the mouth and (b) near the head of the 
estuary for one tidal cycle. Negative friction corresponds 
to flood currents. Note that the advection and accelera­
tion terms are small throughout the tidal cycle at both 
positions. 

tributes only near slack water, is negligible most of 
the time, and is zero when averaged over T. The 
wave form is nearly symmetric near the mouth 
(Fig.5a), but becomes asymmetric further 

2landward (Fig. 5b). The advection term, !D x U , is 
almost negligible except near slack water when 
velocities and the resulting friction are small. 
Otherwise, the balance is between the surface 
pressure gradient, 0..'1, and friction. The time 
averaged momentum balance is between the fric­
tion and slope terms (hydaulic balance) which 
dominate the balance throughout the estuary. 
However, the free surface slope changes within an 
hour from its ebb to maximum flood value. 

5. Numerical experiments 

Table 1 summarizes the experiments conducted 
to explore the parameter space (e, ¢J, y). Barotropic 
tides in channels of constant breadth and depth 
with no riverine inflow will be classified and inter­
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Table 1. Summary ofnumerical experiments 

Experiment Parameters Comments 

¢J y 

case I: 0.8 0.25 0.10 bore on flood 
case 2: 0.8 0.10 0.10 hydraulic case 
case 3: 0.4 0.10 0.10 marginal hydraulic 
case 4: 0.4 0.25 0.10 damped wave 
case 5: 0.4 0.50 0.10 damped wave 
case 6: 0.4 0.25 0.50 marginal bore 
case 7: 0.4 0.50 0.50 bore on flood 
case 8: 0.8 0.50 0.50 flood and ebb bore 
Severn : 0.8 0.15 0.14 bore on flood 
Conwy: 0.8 0.11 0.07 hydraulic regime 

preted in terms of these parameters. Next, we 
discuss typical cases to illustrate the variety of 
estuaries the model can address. 

5.1.	 Highly nonlinear flows: E = 0.8 

When E = 0.8, we expect highly nonlinear 
responses. Bores develop in case I (E = 0.8, 
I/J = 0.25, y = 0.1). Figs. 6a and b give the velocity 
and water level contours in the (x, t) plane for one 
tidal cycle. Solid and broken lines representing ebb 
and flood currents, respectively. During ebb the 
currents vary mainly with axial position, not time, 
whereas during flood the currents vary dominantly 
with time. This ebb-flood asymmetry in velocity is 
most evident near the estuarine head where the ebb 
phase lasts about two-thirds of a cycle. In Fig. 6b 
solid and broken contour lines represent eleva­
tions above and below the mean water level, 
respectively. Finally, for the same tidal cycle 
Fig. 6c depicts two families of characteristic curves. 
They form, mathematically, a curvi-linear co­
ordinate system on which the Riemann invariants 
u*±[g(A*/b*)JI/2 stay constant. Physically, 
the upward sloping characteristics in Fig. 6c 
correspond to long gravity waves which propagate 
from the head of the estuary toward its mouth, 
whereas the downward sloping characteristics 
represent waves that propagate in the opposite 
direction. We interpret converging characteristics 
in the figure as compressional waves (Stoker, 
1948) which have coalesced to form a bore. The 
envelope of these coalescing characteristics thus 
tracks the bore path in (x, t) space. As seen in 
Fig. 6c for case I, a tidal bore forms near the 
estuarine mouth and propagates upstream with a 
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Fig. 6. Contours in the (x, t) plane of model prediction 
for case I (e = 0.8, ¢J = 0.25, y = 0.1): (a) velocity; note the 
shorter, more intense flood currents; (b) water level; note 
the rapid change of water level from ebb to flood at any 
position; (c) characteristic curves; up- and downward 
sloping characteristics represent seaward and landward 
propagating long gravity waves, converging charac­
teristics indicate the presence of a tidal bore. 

speed of about 3U. Prior to flood, the flow at the 
mouth of the estuary is supercritical, i.e., particle 
velocities are greater than the phase velocity of the 
tidal wave. Thus, no upstream propagating 
characteristics enter from the mouth for almost 
T/6, as they are all swept downstream relative to 
the channel. 

Fig. 7 shows the momentum balance at three 
grid points for a single tidal cycle. Close to the 
mouth (x = 0.09) the acceleration term, a,u, con­
tributes only near slack water and is negligible 
most of the time. Furthermore, its average over 
one cycle T is zero. The dominant momentum 
balance there is between the friction, the advection 
(!a,u 2 

), and the slope (a '1) terms. No tidal borex 

passes x = 0.09. However, the free surface slope 
changes within T/12 from its ebb to maximum 
flood value. Bores do pass both x = 0.35 and 0.65. 
All terms contribute then, but friction diminishes 
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Fig. 7. Model momentum balance for a single tidal cycle 
of case I (E = 0.8, i,b = 0.25, i' = 0.1) at three locations: 
(a) the bore (see Fig. 6c) is weak near the mouth where 
nonlinear advection and friction balance the free surface 
slope; further landward (b and c) the slope term changes 
sign quickly at about t = 0.7, a bore passes then. ote the 
diminishing importance of the frictional term with 
landward position from (a) to (c). During the bore's 
passage friction and acceleration balance the slope and 
nonlinear advection term. 

upstream. The balance at x = 0.65 clearly shows 
that the bore's passage rapidly alters the momen­
tum balance; otherwise all terms are small and 
nearly constant. 

Case 2 represents a short, frictionally dominated 
estuary with e = 0.8, </J = 0.1, and y = 0.1. Fig. 8 
depicts model predictions of velocity, water level, 
and characteristics. Note that the -0.25 contour 
line does not advance far into the estuary. The 
nearly straight characteristics in Fig. 8c indicate 
that no tidal bore forms. The momentum balance 
(not shown) resembles that of the Conwy Estuary 
where the major balance was between the water 
surface slope and friction (hydraulic balance). 
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The velocity and water level contours in Fig. 6 
(case 1) and Fig. 8 (case 2) appear qualitatively 
similar, but exhibit two important differences. 

(a) The velocities are higher and change more 
rapidly in time and space for lower friction 
(case I); hence, nonlinear advection is more 
important in the momentum balance of case 1 
when compared with case 2. 

(b) A time averaged slope present in case 2 is 
weak in case 1. 

Tidal bores tend to form in estuaries where the 
frictional bottom stresses are relatively small. The 
two cases just discussed support this argument, 
since for high friction (case 2) no bore develops, 
but for low friction (case 1) a bore forms. Prandle 
(1985) supports this finding: he modeled the linear 
tidal response of the Bristol Channel, the Bay of 
Fundy, and 8 other estuaries. For the former two 
estuaries, where bores develop frequently, he used 

ebb 

___ - -=0.25­

--- "­
(bl	 "-, 

o~ 

\
\ 0.25 \ 
O.s I I 

leI 

Fig. 8. As Fig. 6, but for case 2 (E = 0.8, i,b = 0.1, y = 0.1). 
Shown are (a) velocity, (b) water level, and (c) charac­
teristic curves. As in Fig. 6, the flood currents are short in 
duration and high in magnitude. The negative water level 
contours do not advance far into the channel, therefore 
causing a strong time averaged free surface slope which is 
typical for hydraulic regimes. No bore is present, as the 
almost straight characteristics indicate. 
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a frictional coefficient which was an order of 
magnitude smaller than the coefficients in his other 
8 estuaries. However, his model does not account 
for nonlinearities and does not model bores. 

5.2.	 Moderately nonlinear flows: e = 0.4 

Cases 3 to 7 are representative examples of 
moderately nonlinear flows (e:= 1]0/H = 0.4), We 
vary the frictional parameter ¢J = LriLA first for 
geometrically short estuaries (1' = L g / LA = 0.1, 
cases 3-5) and then for geometrically longer 
estuaries (1' = 0.5, cases 6 and 7). 
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Fig. 9. Amplitude and phase propagation into the 
estuary of the forcing frequency constituent (T-tide, solid 
line) and its first harmonic (Tj2-tide, symbols): (a) case 3 
(0 = 0.4, tP = 0.1, l' = 0.1); (b) case 4 (0 = 0.4, tP = 0.25, 
l' = 0.1); and (c) case 5 (0 = 0,4, tP = 0,5, l' = 0.1). No bore 
develops in any of the cases, The amplitude of the T-tide 
increases with increasing tP (decreasing friction). As 
friction decreases from (a) to (c) the fundamental 
constituent and its first harmonic become phase locked, 

A common effect of nonlinearity in tidal flows is 
the production of temporal variations that repre­
sent harmonics of the basic forcing period T 
(Aubrey and Speer, 1985). Thus, we expect our 
model results to contain Fourier constituents of 
period T/2, T/3, etc. The amplitude distribution 
with x of the first harmonic constituent serves as 
an indicator of the strength of nonlinearity. 

Fig. 9 depicts the results of a harmonic analysis 
of water level for the forcing period T and its 
first harmonic of period T/2 for short estuaries 
(1' = 0.1). It shows the along channel phase and 
amplitude variation for cases 3, 4, and 5. Friction 
decreases successively as we increase ¢J from 0.1 to 
0.5. Solid lines represent the results for the T tide, 
whereas the dots represent those for the first har­
monic. The phase of the T/2 tide plotted is the local 
phase difference 8:= 8T - 28 m between the two 
periods analyzed, where 8T and 8m are the respec­
tive phases of the T- and T/2 tide. For case 3 
(Fig. 9a) friction quickly damps the amplitude of 
the T tide and keeps that of the T/2 tide small. For 
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Fig. 10, As Fig. 9 but for: (a) case 6 (0 = 0.4, tP = 0.25, 
l' = 0.5) and (b) case 7 (0 = 0.4, tP = 0.5, l' = 0.5). Bores 
develop in both cases since the characteristic curves (not 
shown) coalesce. The amplitude of the T-tide decreases in 
the middle part of the estuary and then increases in the 
upper parts. The phase difference between the T- and the 
Tj2-tides varies with position; therefore the two tides are 
not phase locked. 
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x*/ L g> 0.4 the T/2 tide is phase locked to the T 
tide, i.e. () is nearly constant. The amplitude of the 
T/2 tide increases greatly with upstream position 
in cases 4 and 5. However, the characteristics (not 
shown) do not coalesce and therefore no bores 
develop. 

Finally, we discuss a similar set of experiments 
for long estuaries, i.e., y = 0.5. Weak or marginal 
bore development occurs in case 6 (t/J = 0.25) and 
case 7 (t/J = 0.5) for which Fig. 10 depicts the 
amplitude and phase variations along the channel. 
For both cases, the amplitudes of the T tide at 
x*/L g = 0.6 reduce to less than 30 % of their value 
at the mouth. The amplitude of the T/2 tide 
increases and reaches a maximum where the Ttide 
has its minimum. The characteristic curves (not 
shown) coalesce in both cases, hence bore develop­
ment is evident for cases 6, 7. 

6. Summary 

Observations and modeling of barotropic 
estuarine tidal dynamics have shown that estuaries 
are not necessarily simple co-oscillations of the 
coastal oceans. During the last three decades much 
has been learnt about the physical mechanisms 
causing such nonlinear tidal motion (Kreiss, 1957; 
Le Blond, 1978; Aubrey and Speer, 1985) and tidal 
wave breaking (Abbott, 1956). In this study we 
have demonstrated that the tidal wave entering 
estuaries may undergo drastic distortions. We 
have also presented a unifying model of barotropic 
tides in estuaries, have defined the dimensionless 
parameters that govern them, and have modeled 
them numerically. 

A scaling analysis of the governing equations 
revealed that the following parameters govern 
barotropic tidal dynamics in estuaries: 

(1) e== r,o/H, the ratio between the tidal 
amplitude at the estuarine mouth and the mean 
depth in the estuary. This parameter indicates the 
nonlinearity of the estuary (Ianniello, 1977); 

(2) if> == LriL)., the ratio between the frictional 
and the tidal length scales; 

(3) y == Lg/L;., the ratio between the geometric 
and the tidal length scales. 
The last two parameters determine which term 
balances the free surface slope in the momentum 
balance. 
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In Fig. 11 we sketch the domain of different 
estuarine regimes in the three dimensional 
parameter space (e, t/J, y). It shows in particular the 
(e, t/J, y) co-ordinates for the seven cases studied 
in Section 5. We draw three different planes 
of e corresponding to nearly linear (e = 0.1), 
moderately nonlinear (e = 0.4), and highly non­
linear (e = 0.8) estuarine flows. We also sketch 
two surfaces marking the tentative boundaries 
between three dynamic regimes: damped tidal 
waves, hydraulic balances, and bores. Though 
approximate, these boundaries are based on the 
seven cases discussed as well as on many more not 
presented. By estimating the parameters (e, t/J, y) 
for a particular estuary one may thus predict the 
dynamic regime of that estuary in advance. 

The lowest e level (e = 0.1) and below is the 
domain of linear and weakly nonlinear tidal waves 
(Ianniello, 1977; Prandle, 1985). The symbol Lon 
this plane indicates the position of the linear test 
case used for model verification (Muenchow, 
1988). Only for large friction (t/J ~ 1) do we expect 
hydraulic responses here. The e = 0.4 level exhibits 
a variety of regimes for different length scale ratios 
t/J and y. For large friction (t/J < 0.1), we find 
hydraulic balances, while tidal bores are possible 
for if> and y both larger than 0.5. The domain 
between these regimes for e = 0.4 consists of non­
linearily distorted, but damped waves. Finally, for 
strongly nonlinear tidal responses (e = 0.8), either 
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Fig. II. Sketch of the dynamic regimes in parameter 
space (e, ¢>, i'). Each point in (e, ¢>, 1') space represents an 
estuary, i.e., Sand C indicate the position of the Severn 
and Conwy estuaries, L the linear test case, and x 
indicates the position of the eight numerical cases sum­
marized in Table I. 
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part of the (1), y) plane. The Conwy Estuary 
(£=0.8,1>=0.11, y=0.07; Section 4) and the 
Severn Estuary (£=0.8,1>=0.15, y=0.14; 
Muenchow, 1988) represent qualitatively different 
model responses, since only for the Severn model 
do bores develop. In contrast, the Conwy Estuary 
model displays hydraulic balance. The same dis­
tinction is found in observations of the two 
estuaries (Rowbotham, 1983). 
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